Show simple item record

Authordc.contributor.authorCorrea Haeussler, José 
Authordc.contributor.authorMarchetti Spaccamela, Alberto 
Authordc.contributor.authorMatuschke, Jannik 
Authordc.contributor.authorStougie, Leen 
Authordc.contributor.authorSvensson, Ola 
Authordc.contributor.authorVerdugo, Víctor 
Authordc.contributor.authorVerschae Tannenbaum, José 
Admission datedc.date.accessioned2016-01-14T13:31:14Z
Available datedc.date.available2016-01-14T13:31:14Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationMathematical Programming Volumen: 154 Número: 1-2 Dec 2015en_US
Identifierdc.identifier.issn0025-5610
Identifierdc.identifier.otherDOI: 10.1007/s10107-014-0831-8
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/136499
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractWe study a natural generalization of the problem of minimizing makespan on unrelated machines in which jobs may be split into parts. The different parts of a job can be (simultaneously) processed on different machines, but each part requires a setup time before it can be processed. First we show that a natural adaptation of the seminal approximation algorithm for unrelated machine scheduling [11] yields a 3-approximation algorithm, equal to the integrality gap of the corresponding LP relaxation. Through a stronger LP relaxation, obtained by applying a lift-and-project procedure, we are able to improve both the integrality gap and the implied approximation factor to 1 + φ, where φ ≈ 1.618 is the golden ratio. This ratio decreases to 2 in the restricted assignment setting, matching the result for the classic version. Interestingly, we show that our problem cannot be approximated within a factor better than e e−1 ≈ 1.582 (unless P = NP). This provides some evidence that it is harder than the classic version, which is only known to be inapproximable within a factor 1.5 − ε. Since our 1+φ bound remains tight when considering the seemingly stronger machine configuration LP, we propose a new job based configuration LP that has an infinite number of variables, one for each possible way a job may be split and processed on the machines. Using convex duality we show that this infinite LP has a finite representation and can be solved in polynomial time to any accuracy, rendering it a promising relaxation for obtaining better algorithmsen_US
Patrocinadordc.description.sponsorshipNucleo Milenio Informacion y Coordinacion en Redes ICM/FIC P10-024F EU-IRSES Grant EUSACOU DFG SPP 1307 ERC 335288-OptApprox FONDECYT 3130407 Berlin Mathematical School Tinbergen Institute ABRI-VUen_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherSpringeren_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Títulodc.titleStrong LP Formulations for Scheduling Splittable Jobs on Unrelated Machinesen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile