Propagación de caos para sistemas de partículas de interacción de salto puro
Tesis
Publication date
2015Metadata
Show full item record
Cómo citar
Fontbona Torres, Joaquín
Cómo citar
Propagación de caos para sistemas de partículas de interacción de salto puro
Author
Professor Advisor
Abstract
En la mecánica estadística, la ecuación de Boltzmann espacialmente homogénea (en honor de Ludwig Eduard Boltzmann, quien introdujo la primera versión en 1872) describe a nivel macroscópico la evolución temporal de la distribución de las velocidades de una enorme cantidad de moléculas de un gas en R³, las cuales obedecen las leyes de la mecánica clásica y están sujetas a colisiones a nivel microscópico. Ecuaciones de similares características han sido introducidas recientemente en variadas situaciones; por ejemplo, para modelar la redistribución de riqueza en una población, en el contexto de la Econofísica.
Con el fin de validar matemáticamente la ecuación de Boltzmann y a la vez deducir propiedades de la misma, en 1956 Kac propuso estudiar un sistema de partículas, el cual es un proceso estocástico a valores en (R³)^N que representa las velocidades de N partículas que evolucionan continuamente en el tiempo y cambian su estado mediante saltos aleatorios correspondientes a las colisiones entre ellas. Es sabido que este sistema aproxima a la ecuación, en el sentido que se cumple la propiedad de propagación de caos: la medida empírica del sistema converge débilmente a la solución de la ecuación en el límite cuando N → ∞. En los últimos años ha habido gran interés por cuantificar esta convergencia, con dependencia explícita en N y en el tiempo t, e idealmente uniforme en t, pues esto validaría plenamente a la distribución estacionaria de la ecuación como el estado del gas en equilibrio termodinámico.
En la presente tesis se estudia la propagación de caos para algunos sistemas de partículas, incluyendo a los modelos recién descritos. En el Capítulo 2 se trabaja con un sistema a valores en un espacio general, y se obtiene un resultado de propagación de caos en convergencia débil en el espacio de trayectorias. En el Capítulo 3 se estudia una clase de sistemas de partículas en R que incluye a algunos modelos de redistribución de riqueza y a una versión simplificada de la ecuación de Boltzmann, introducida por Kac. Se desarrolla una técnica de coupling que permite obtener resultados de propagación de caos con tasas polinomiales moderadas en N y t. Finalmente, en el Capítulo 4 se utiliza esta técnica en el contexto de la ecuación de Boltzmann y se obtiene el resultado principal de la tesis (el cual mejora significativamente la tasa uniforme obtenida por Mischler y Mouhot en 2013):
Teorema. Para la ecuación de Boltzmann espacialmente homogénea en el caso de las moléculas de Maxwell, se tiene una tasa uniforme de propagación de caos, en distancia de Wasserstein 2 al cuadrado, de orden casi N^{−1/6}.
General note
Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática
Identifier
URI: https://repositorio.uchile.cl/handle/2250/137542
Collections
The following license files are associated with this item: