Sharp non-asymptotic performance bounds for and Huber robust regression estimators
Artículo
![Thumbnail](/themes/Mirage2/images/cubierta.jpg)
Publication date
2015Metadata
Show full item record
Cómo citar
Flores, Salvador
Cómo citar
Sharp non-asymptotic performance bounds for and Huber robust regression estimators
Author
Abstract
A quantitative study of the robustness properties of the and the Huber M-estimator on finite samples is presented. The focus is on the linear model involving a fixed design matrix and additive errors restricted to the dependent variables consisting of noise and sparse outliers. We derive sharp error bounds for the estimator in terms of the leverage constants of a design matrix introduced here. A similar analysis is performed for Huber's estimator using an equivalent problem formulation of independent interest. Our analysis considers outliers of arbitrary magnitude, and we recover breakdown point results as particular cases when outliers diverge. The practical implications of the theoretical analysis are discussed on two real datasets.
General note
Artículo de publicación ISI
Patrocinador
FONDECYT program
3120166
Identifier
URI: https://repositorio.uchile.cl/handle/2250/138193
DOI: DOI: 10.1007/s11749-015-0435-5
Quote Item
TEST (2015) 24:796–812
Collections
The following license files are associated with this item: