Show simple item record

Professor Advisordc.contributor.advisorBrzovic Pérez, Andrés
Authordc.contributor.authorLeón Molina, Ítalo Adrián 
Staff editordc.contributor.editorFacultad de Ciencias Físicas y Matemáticas
Staff editordc.contributor.editorDepartamento de Geología
Associate professordc.contributor.otherRebolledo Lemus, Sofía
Associate professordc.contributor.otherSepúlveda Valenzuela, Sergio 
Admission datedc.date.accessioned2016-08-17T14:35:55Z
Available datedc.date.available2016-08-17T14:35:55Z
Publication datedc.date.issued2016
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/140041
General notedc.descriptionGeólogo
Abstractdc.description.abstractEn minería subterránea, los problemas de inestabilidad de las excavaciones dependen esencialmente de los esfuerzos y de las características del macizo rocoso. Los esfuerzos se asocian a la condición in situ (profundidad, tectonismo, otros) y a los inducidos por las mismas excavaciones (tamaño y forma). En relación al macizo rocoso, son importantes las características del material o roca intacta, pero sobre todo las características geométricas y mecánicas del arreglo estructural. Se ha observado que en las grandes inestabilidades geomecánicas en mina El Teniente (explosiones de roca y cuñas) existe un importante control estructural, en muchos casos definido por estructuras geológicas sub paralelas a las excavaciones (González & Brzovic, 2015), de trazas menores a los estándares de mapeos mina y/o muy difíciles de observar en ellos. Dentro las características mecánicas y geométricas de las estructuras geológicas, el tamaño o largo también es una de las más importantes y a su vez más difíciles de observar por su intrínseca característica 3D (observaciones en sondajes 1D, afloramiento rocoso o cara de una excavación 2D). Para resolver el tamaño de las estructuras geológicas en torno a las excavaciones, la literatura especializada en geología estructural ha avanzado con el desarrollo y la construcción de lo que se ha denominado el Arreglo Estructural en 3D o Discrete Fracture Network (DFN). El DFN, en relación a largo de las estructuras geológicas, se basa en las relaciones matemáticas de observaciones en 2D y la propiedad 3D tamaño de las mismas, desarrollada por Warburton (1980). Trabajos previos realizados en Mina El Teniente, basados en la construcción de modelos estocásticos del arreglo estructural, han establecido un tamaño medio de las estructuras geológicas (vetillas tipo stockwork) de 1,0 m para una distribución lognormal y de 0,9 m para un distribución exponencial en la roca dacita (Brzovic y Herrera, 2011). Es de esperar que esta característica geológica del stockwork presente variaciones a lo ancho y largo del yacimiento. En este trabajo se presenta una metodología que permite la construcción de modelos de DFN a partir de la información obtenida del mapeo de estructuras mediante el uso de la fotogrametría digital en el software 3DM Analyst. En otras palabras, se construye un modelo DFN, definido por parámetros básicos, que se ajusta a las propiedades observadas en fotografías digitales 3D de los desarrollos (Mapeos). Estos parámetros básicos corresponden a: i) Distribución de Orientaciones, ii) Distribución de Tamaños, e iii) Intensidad de Fracturamiento P_32 (m^2/m^3). La distribución de orientaciones se simula mediante la técnica de remuestreo estadístico Bootstrap (Efron, 1979), la distribución de tamaños mediante la aplicación del método Simulated Sampling (La Pointe et al., 1983), y la Intensidad de Fracturamiento mediante la correlación existente entre distintas medidas de intensidad, P_21 (m/m^2) y P_32 (m^2/m^3) (Dershowitz & Herda, 1992). Los análisis de detalle para 70 fotografías o imágenes 3D de los túneles en mina El Teniente en los niveles actuales de explotación (Mina Reno y Esmeralda) se realizaron para distintos tamaños de corte de largo de traza observado de las estructuras geológicas (Truncation bias). Los resultados permiten decir que la intensidad de fracturamiento, orientación y distribución de largos de las estructuras geológicas varían disparo a disparo con rangos específicos de P32 entre 2 y 7 m2/m3 para un tamaño de corte mínimo de 0,5 m en roca Cmet. Estos resultados permiten estudiar también las características geológicas propias del stockwork y su aplicación a la estabilidad de las excavaciones. De hecho, la metodología propuesta entrega además un criterio para definir las características del arreglo estructural (DFN) entorno a las excavaciones.en_US
Lenguagedc.language.isoesen_US
Publisherdc.publisherUniversidad de Chileen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectMinería subterráneaen_US
Keywordsdc.subjectYacimientos minerales - Chile - Sexta regiónen_US
Keywordsdc.subjectAnálisis estocásticoen_US
Keywordsdc.subjectFotogrametríaen_US
Keywordsdc.subjectMecánica de rocasen_US
Keywordsdc.subjectExcavaciones subterráneasen_US
Keywordsdc.subjectVetas (Geología)en_US
Keywordsdc.subjectMina El Teniente (Chile)en_US
Títulodc.titleDeterminación del tamaño de las vetillas tipo stockwork mediante fotografía digital 3D y análisis estocástico, mina El Tenienteen_US
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile