Show simple item record

ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex

Authordc.contributor.authorLiu, Tie 
Authordc.contributor.authorLacy, John 
Authordc.contributor.authorLi, Pak Shing 
Authordc.contributor.authorWang, Ke 
Authordc.contributor.authorQin, Sheng-Li 
Authordc.contributor.authorZhang, Qizhou 
Authordc.contributor.authorKim, Kee-Tae 
Authordc.contributor.authorGaray Brignardello, Guido 
Authordc.contributor.authorWu, Yuefang 
Authordc.contributor.authorMardones, Diego 
Authordc.contributor.authorZhu, Qingfeng 
Authordc.contributor.authorTatematsu, Ken'ichi 
Authordc.contributor.authorHirota, Tomoya 
Authordc.contributor.authorRen, Zhiyuan 
Authordc.contributor.authorLiu, Sheng-Yuan 
Authordc.contributor.authorChen, Huei-Ru 
Authordc.contributor.authorSu, Yu-Nung 
Authordc.contributor.authorLi, Di 
Cita de ítemdc.identifier.citationAstrophysical Journal, 2017 Vol. 849 (1)es_ES
Abstractdc.description.abstractStellar feedback from high-mass stars (e.g., H II regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one subvirial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM1-MM12) detected by ALMA are at very different evolutionary stages, from the starless core phase to the UC H II region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass-velocity diagrams of the outflows associated with MM7/G and MM8/F can be well-fit by broken power laws. The mass-velocity diagram of the SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M-circle dot, assuming a dust temperature of <= 20 K. The shocks from the expanding H II regions ("B" and "C") to the west may have a great impact on the G9.62 clump by compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H II regions may enhance the star formation efficiency and suppress low-mass star formation in adjacent pre-existing massive clumps.es_ES
Patrocinadordc.description.sponsorshipKASI fellowship / EACOA fellowship / Peking University, Chinese Academy of Sciences, South America Center for Astrophysics (CASSACA) / Universidad de Chile / National Natural Science Foundation of China (NSFC), U1631237 / Chinese Academy of Sciences (CAS), U1631237 / Top Talents Program of Yunnan Province, 2015HA030 / German Research Foundation (DFG), WA3628-1/1, 1573es_ES
Publisherdc.publisherIOP Publishing Ltdes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.uri*
Sourcedc.sourceAstrophysical Journales_ES
Keywordsdc.subjectStars formationes_ES
Keywordsdc.subjectISM kinematics and dynamicses_ES
Keywordsdc.subjectISM jets and outflowses_ES
Keywordsdc.subjectISM Hii regionses_ES
Títulodc.titleALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complexes_ES
Document typedc.typeArtículo de revistaes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile