Show simple item record

Authordc.contributor.authorMaureira, María José 
Authordc.contributor.authorArce, Héctor G. 
Authordc.contributor.authorOffner, Stella S. R. 
Authordc.contributor.authorDunham, Michael M. 
Authordc.contributor.authorPineda, Jaime E. 
Authordc.contributor.authorFernández López, Manuel 
Authordc.contributor.authorChen, Xuepeng 
Authordc.contributor.authorMardones Pérez, Diego 
Admission datedc.date.accessioned2018-06-12T22:25:43Z
Available datedc.date.available2018-06-12T22:25:43Z
Publication datedc.date.issued2017
Cita de ítemdc.identifier.citationAstrophysical Journal Vol. 849 (2): 89es_ES
Identifierdc.identifier.other10.3847/1538-4357/aa91ce
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/148814
Abstractdc.description.abstractWe use CARMA 3 mm continuum and molecular lines (NH2D, N2H+, HCO+, HCN, and CS) at similar to 1000 au resolution to characterize the structure and kinematics of the envelope surrounding the deeply embedded first core candidate Per-bolo 58. The line profile of the observed species shows two distinct peaks separated by 0.4-0.6 km. s(-1), which most likely arise from two different optically thin velocity components rather than the product of self-absorption in an optically thick line. The two velocity components, each with a mass of similar to 0.5-0.6 M circle dot, overlap spatially at the position of the continuum emission and produce a general gradient along the outflow direction. We investigate whether these observations are consistent with infall in a turbulent and magnetized envelope. We compare the morphology and spectra of the N2H+ (1-0) with synthetic observations of an MHD simulation that considers the collapse of an isolated core that is initially perturbed with a turbulent field. The proposed model matches the data in the production of two velocity components, traced by the isolated hyperfine line of the N2H+ (1-0) spectra, and shows a general agreement in morphology and velocity field. We also use large maps of the region to compare the kinematics of the core with that of the surrounding large-scale filamentary structure and find that accretion from the large-scale filament could also explain the complex kinematics exhibited by this young dense core.es_ES
Patrocinadordc.description.sponsorshipCONICYT PAI/INDUSTRIA 79090016 College of Liberal Arts and Sciences at the State University of New York at Fredonia NSF AAG grant AST-1510021 NSFC 11473069 European Research Council (ERC) PALs 320620es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIOP Publishing Ltd.es_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceAstrophysical Journales_ES
Keywordsdc.subjectISM individual objects (Per-bolo 58)es_ES
Keywordsdc.subjectStars formationes_ES
Keywordsdc.subjectStars kinematics and dynamicses_ES
Keywordsdc.subjectStars low masses_ES
Keywordsdc.subjectStars protostarses_ES
Títulodc.titleA turbulent origin for the complex envelope kinematics in the young low-mass core Per - Bolo 58es_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile