Show simple item record

Authordc.contributor.authorReyes, Paula 
Authordc.contributor.authorValencia, Felipe 
Authordc.contributor.authorVega, Hector 
Authordc.contributor.authorRuestes, Carlos 
Authordc.contributor.authorRogan Castillo, José 
Authordc.contributor.authorValdivia Hepp, Juan 
Authordc.contributor.authorKiwi Tichauer, Miguel 
Admission datedc.date.accessioned2018-10-01T14:21:31Z
Available datedc.date.available2018-10-01T14:21:31Z
Publication datedc.date.issued2018-05
Cita de ítemdc.identifier.citationInorganic chemistry frontiers Volumen: 5 Número: 5 Páginas: 1139-1144es_ES
Identifierdc.identifier.other10.1039/c7qi00822h
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/151870
Abstractdc.description.abstractHollow nanoparticles (hNPs) are of interest because their large cavities and small thickness give rise to a large surface to volume ratio. However, in general they are not in equilibrium and far from their global energy minimum, which often makes them unstable against perturbations. In fact, a temperature increase can induce a structural collapse into a nanoparticle, and consequently a loss of their unique properties. This problem has been studied by means of molecular dynamics (MD) simulations, but without emphasis on the speed of the temperature increase. Here we explore how the temperature variation, and the rate at which it is varied in MD simulations, determines the final conformation of the hNPs. In particular, we show how different temperature ramps determine the final shape of Pt hNPs that initially have an external radius between 0.7 and 24 nm, and an internal radius between 0.19 and 2.4 nm. In addition, we also perform the simulations of other similar metals like Ag and Au. Our results indicate that the temperature ramp strongly modifies the final hNP shape, even at ambient temperature. In fact, a rapid temperature increase leads to the formation of stacking faults and twin boundaries which are not generated by a slower temperature increase. Quantitative criteria are established and they indicate that the stacking fault energy is the dominant parameter.es_ES
Patrocinadordc.description.sponsorshipFondo Nacional de Investigaciones Cientificas y Tecnologicas (FONDECYT, Chile) 1160639 1150718 Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807 AFOSR FA9550-16-1-0122 FA9550-16-1-0384 ANPCyT PICT-2015-0342 CONICYT 21140948es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherRoyal SOC. chemistryes_ES
Sourcedc.sourceInorganic chemistry frontierses_ES
Keywordsdc.subjectEmbedded-atom-methodes_ES
Keywordsdc.subjectLaser-ablationes_ES
Keywordsdc.subjectAtomistic simulationes_ES
Keywordsdc.subjectMolecular-dynamicses_ES
Keywordsdc.subjectAGes_ES
Keywordsdc.subjectNanocubeses_ES
Keywordsdc.subjectPDes_ES
Keywordsdc.subjectAUes_ES
Keywordsdc.subjectNanostructureses_ES
Keywordsdc.subjectNanomedicinees_ES
Títulodc.titleThe stability of hollow nanoparticles and the simulation temperature rampes_ES
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso a solo metadatoses_ES
Catalogueruchile.catalogadorrgfes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record