Show simple item record

Authordc.contributor.authorRamírez, Max 
Authordc.contributor.authorGonzález, Rafael I. 
Authordc.contributor.authorBaltazar, Samuel E. 
Authordc.contributor.authorRojas-Nunez, Javier 
Authordc.contributor.authorAllende, Sebastián 
Authordc.contributor.authorValdivia, Juan Alejandro 
Authordc.contributor.authorRogan Castillo, José 
Authordc.contributor.authorKiwi Tichauer, Miguel 
Authordc.contributor.authorValencia, Felipe 
Admission datedc.date.accessioned2019-10-22T03:11:14Z
Available datedc.date.available2019-10-22T03:11:14Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationInorganic Chemistry Frontiers, Volumen 6, Issue 7, 2019, Pages 1701-1706
Identifierdc.identifier.issn20521553
Identifierdc.identifier.other10.1039/c8qi01398e
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/171892
Abstractdc.description.abstractOxygen absorption and the thermal stability of Al147 nanoparticles were studied by means of classical molecular dynamics simulations and Monte Carlo methods. The results suggest that for the studied sizes, oxygen incorporation yields an Al2O3 nanoparticle with a Janus-like morphology, contrary to the expected core-shell nanostructure observed in simulations and experiments of nanometer-size nanoparticles. A simulated annealing, introduced to support this assumption, shows that the Janus-like morphology has a lower energy than that of Al@Al2O3 with a core@shell conformation. Also, the thermal behavior of a Janus-like Al/Al2O3 nanoparticle as a function of oxygen concentration was investigated. It is observed that the partial oxidation reduces the nanoparticle melting temperature because the number of pure aluminum atoms is reduced. In fact, the melting point can be as low as 400 K for an Al147O30 nanoparticle. The melting process leads to a solid alumina region that coexists with liquid-like aluminum nanoparticles. The oxide never adopts a protective shell covering configuration of the aluminum nanoparticle.
Lenguagedc.language.isoen
Publisherdc.publisherRoyal Society of Chemistry
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceInorganic Chemistry Frontiers
Keywordsdc.subjectInorganic Chemistry
Títulodc.titleThermal stability of aluminum oxide nanoparticles: Role of oxygen concentration
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile