Show simple item record

Authordc.contributor.authorGonzález-Jiménez, José María 
Authordc.contributor.authorRoqué-Rosell, Josep 
Authordc.contributor.authorJiménez-Franco, Abigail 
Authordc.contributor.authorTassara, Santiago 
Authordc.contributor.authorNieto, Fernando 
Authordc.contributor.authorGervilla, Fernando 
Authordc.contributor.authorBaurier, Sandra 
Authordc.contributor.authorProenza, Joaquín A. 
Authordc.contributor.authorSaunders, Edward 
Authordc.contributor.authorDeditius, Artur P. 
Authordc.contributor.authorSchilling, Manuel E. 
Authordc.contributor.authorCorgne, Alexandre 
Admission datedc.date.accessioned2019-10-30T15:40:07Z
Available datedc.date.available2019-10-30T15:40:07Z
Publication datedc.date.issued2019
Cita de ítemdc.identifier.citationContributions to Mineralogy and Petrology, Volumen 174, Issue 5, 2019,
Identifierdc.identifier.issn14320967
Identifierdc.identifier.issn00107999
Identifierdc.identifier.other10.1007/s00410-019-1583-5
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/172537
Abstractdc.description.abstractPlatinum-rich nanonuggets (s.l., nanoparticles) are commonly produced in experiments attempting to quantify the solubility or partitioning of noble metals in silicate and sulfide melts. However, it has been thought that these represent artifacts produced during quenching of the experimental runs. Here, we document nanoparticles (~ 20–80 nm) of Pt-rich alloys and arsenides dispersed in high-temperature metasomatic silicate glasses and in base-metal sulfides (BMS) entrained in them, found interstitially between minerals of mantle peridotite xenoliths from southern Patagonia. Pt-rich nanoparticles found in the interstitial silicate glasses are frequently attached to, or in the proximities of, oxides (ilmenite or Cr-spinel) suggesting a close link between the formation of the oxides and the Pt-rich nanoparticles. The interstitial glasses in the studied xenoliths correspond to quenched alkaline basaltic melts that infiltrated the subcontinental lithospheric mantle (SCLM) at > 1000 °C at an oxygen fugacity (fO2) near the fayalite–magnetite–quartz (FMQ) buffer. Experimental works indicate that at these conditions the crystallization of oxides such as ilmenite or Cr-spinel may lower fO2 to promote the precipitation of Pt-rich nanoparticles. The investigation of four Pt-rich nanoparticles hosted in two different pentlandite grains using a combination of focused ion beam and high-resolution transmission electron microscopy (FIB/HRTEM) show that these nanoparticles consists of polycrystalline aggregates < 10 nm that are randomly oriented relative to their sulfide host matrices. These observations suggest that these nanoparticles could be segregated either directly from the infiltrating alkaline basaltic melt prior to sulfur saturation in the silicate melt, or from droplets of immiscible sulfide melt once sulfur saturation was achieved. The formation of Pt-rich nanoparticles in high-temperature melts, either silicate or sulfide, provides new clues on the processes of fractionation, transport and concentration of Pt in the mantle.
Lenguagedc.language.isoen
Publisherdc.publisherSpringer Verlag
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceContributions to Mineralogy and Petrology
Keywordsdc.subjectFocused ion beam (FIB)
Keywordsdc.subjectMantle xenoliths
Keywordsdc.subjectNanoparticles
Keywordsdc.subjectPlatinum
Keywordsdc.subjectSilicate glass
Keywordsdc.subjectSulfides
Títulodc.titleMagmatic platinum nanoparticles in metasomatic silicate glasses and sulfides from Patagonian mantle xenoliths
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile