Show simple item record

Authordc.contributor.authorVera, Jorge 
Authordc.contributor.authorPereira, Ulises 
Authordc.contributor.authorReynaert, Bryan 
Authordc.contributor.authorBacigalupo Vicuña, Juan 
Authordc.contributor.authorSanhueza Toha, María Magdalena 
Admission datedc.date.accessioned2020-06-03T20:36:30Z
Available datedc.date.available2020-06-03T20:36:30Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationNeuroscience 426 (2020) 13–32es_ES
Identifierdc.identifier.other10.1016/j.neuroscience.2019.10.054
Identifierdc.identifier.urihttp://repositorio.uchile.cl/handle/2250/175225
Abstractdc.description.abstractNeurons from several brain regions resonate in the theta frequency range (4-12 Hz), displaying a higher voltage response to oscillatory currents at a preferred 'resonant' frequency (f(R)). Subthreshold resonance could influence spiking and contribute to the selective entrainment of neurons during the network oscillatory activity that accompanies several cognitive processes. Neurons from different regions display resonance in specific theta subranges, suggesting a functional specialization. Further experimental work is needed to characterize this diversity and explore how frequency preference could be dynamically modulated. Theoretical studies have shown that the fine-tuning of resonance depends in a complex way on a variety of intrinsic factors and input properties, but their specific influence is difficult to dissect in cells. We performed slice electrophysiology, dynamic clamping and modelling to assess the differential frequency preference of rat entorhinal stellate neurons, hippocampal CA1 pyramidal neurons and cortical amygdala neurons, which share a hyperpolarization-activated current (I-h)-dependent resonance mechanism. We found heterogeneous resonance properties among the different types of theta-resonant neurons, as well as in each specific group. In all the neurons studied, f(R) inversely correlated with the effective input resistance (R-in), a measurable variable that depends on passive and active membrane features. We showed that resonance can be adjusted by manipulations mimicking naturally occurring processes, as the incorporation of a virtual constant conductance or cell depolarization, in a way that preserves the f(R)-R-in relationship. The modulation of frequency selectivity influences firing by shifting spike frequency and timing, which could influence neuronal communication in an active network.es_ES
Patrocinadordc.description.sponsorshipComisión Nacional de Investigación Científica y Tecnológica (CONICYT), CONICYT FONDECYT: 1140700, 1140520, 3150668.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherPergamon-Elsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceNeurosciencees_ES
Keywordsdc.subjectTheta-frequency resonancees_ES
Keywordsdc.subjectFrequency modulationes_ES
Keywordsdc.subjectInput resistancees_ES
Keywordsdc.subjectResonant frequencyes_ES
Keywordsdc.subjectPhase-lages_ES
Keywordsdc.subjectSpike timinges_ES
Títulodc.titleModulation of frequency preference in heterogeneous populations of theta-resonant neuronses_ES
Document typedc.typeArtículo de revistaes_ES
Catalogueruchile.catalogadorrvhes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile