Show simple item record

Cita de ítemdc.identifier.citationIMA Journal of Mathematical Control and Information (2020) 37, 143–158es_ES
Abstractdc.description.abstractReal-order generalization of dissipativeness and passivity concepts are presented in this paper. They are characterized as properties of a system; that is, they are independent of the system's internal representation and independent of the type of fractional derivative defining that representation. With the aid of these extended concepts, the stability analysis of linearly interconnected multi-order (mixed-order or multivariable) linear or nonlinear systems consisting of integer and fractional order subsystems becomes a well-defined problem and it is reduced to verify algebraic inequalities and/or the dissipativenes of each subsystem. In particular, small gain and passivity theorems for multi-order systems are obtained. Examples show the benefits in simplicity obtained with this approach when analysing the stability of large-scale multi-order nonlinear systems.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) FB0809 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1150488es_ES
Publisherdc.publisherOxford University Presses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.uri*
Sourcedc.sourceIMA Journal of Mathematical Control and Informationes_ES
Keywordsdc.subjectDissipative systemses_ES
Keywordsdc.subjectFractional order systemses_ES
Keywordsdc.subjectLarge-scale systemses_ES
Keywordsdc.subjectMulti-order; multivariablees_ES
Títulodc.titleA dissipative approach to the stability of multi-order fractional systemses_ES
Document typedc.typeArtículo de revistaes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile