Show simple item record

Authordc.contributor.authorCalderón, D. 
Authordc.contributor.authorCuadra, J. 
Authordc.contributor.authorSchartmann, M. 
Authordc.contributor.authorBurkert, A. 
Authordc.contributor.authorPrieto, J. 
Authordc.contributor.authorRussell, C. M. P. 
Admission datedc.date.accessioned2020-07-06T22:15:14Z
Available datedc.date.available2020-07-06T22:15:14Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationMNRAS 493, 447–467 (2020)es_ES
Identifierdc.identifier.other10.1093/mnras/staa090
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/175818
Abstractdc.description.abstractThe inner parsec of our Galaxy contains tens of Wolf-Rayet stars whose powerful outflows are constantly interacting while filling the region with hot, diffuse plasma. Theoretical models have shown that, in some cases, the collision of stellar winds can generate cold, dense material in the form of clumps. However, their formation process and properties are not well understood yet. In this work, we present, for the first time, a statistical study of the clump formation process in unstable wind collisions. We study systems with dense outflows (similar to 10(-5) M-circle dot yr(-1)), wind speeds of 500-1500 km s(-1), and stellar separations of similar to 20-200 au. We develop three-dimensional high-resolution hydrodynamical simulations of stellar wind collisions with the adaptive-mesh refinement grid-based code RAMSES. We aim at characterizing the initial properties of clumps that form through hydrodynamic instabilities, mostly via the non-linear thin-shell instability (NTSI). Our results confirm that more massive clumps are formed in systems whose winds are close to the transition between the radiative and adiabatic regimes. Increasing either the wind speed or the degree of asymmetry increases the dispersion of the clump mass and ejection speed distributions. Nevertheless, the most massive clumps are very light (similar to 10(-3)-10(-2) M-circle plus), about three orders of magnitude less massive than theoretical upper limits. Applying these results to the Galactic Centre, we find that clumps formed through the NTSI should not be heavy enough either to affect the thermodynamic state of the region or to survive for long enough to fall on to the central supermassive black hole.es_ES
Patrocinadordc.description.sponsorshipMax Planck Society Foundation CELLEX CONICYT project Basal AFB-170002 Excellence Cluster ORIGINS German Research Foundation (DFG) EXC-2094-390783311 CONICYTPCHA/Doctorado Nacional 2015-21151574 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 3170870es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherOxford University Presses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceMonthly Notices of the Royal Astronomical Societyes_ES
Keywordsdc.subjectHydrodynamicses_ES
Keywordsdc.subjectInstabilitieses_ES
Keywordsdc.subjectShock waveses_ES
Keywordsdc.subjectStars: windses_ES
Keywordsdc.subjectOutflowses_ES
Keywordsdc.subjectGalaxy: centrees_ES
Títulodc.titleThree-dimensional simulations of clump formation in stellar wind collisionses_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile