Determination of convex functions via subgradients of minimal norm
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Pérez Aros, Pedro Antonio
Cómo citar
Determination of convex functions via subgradients of minimal norm
Abstract
We show, in Hilbert space setting, that any two convex proper lower semicontinuous functions bounded from below, for which the norm of their minimal subgradients coincide, they coincide up to a constant. Moreover, under classic boundary conditions, we provide the same results when the functions are continuous and defined over an open convex domain. These results show that for convex functions bounded from below, the slopes provide sufficient first-order information to determine the function up to a constant, giving a positive answer to the conjecture posed in Boulmezaoud et al. (SIAM J Optim 28(3):2049-2066, 2018) .
Patrocinador
ANID Chile under grant Fondecyt
1190110
1200283
3190229
ANID Chile under grant Fondecyt de Iniciacion
11180098
Indexation
Artículo de publicación ISI
Quote Item
Mathematical Programming Aug 2020
Collections
The following license files are associated with this item: