Show simple item record

Authordc.contributor.authorGonzález, Alex 
Authordc.contributor.authorCorsini, Gino 
Authordc.contributor.authorLobos Camus, Sergio 
Authordc.contributor.authorSeelenfreund, Daniela 
Authordc.contributor.authorTello, Mario 
Admission datedc.date.accessioned2021-04-05T22:56:44Z
Available datedc.date.available2021-04-05T22:56:44Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationGenes 2020, 11, 1227es_ES
Identifierdc.identifier.other10.3390/genes11101227
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/178944
Abstractdc.description.abstractCeriporiopsis subvermispora is a white-rot fungus with a high specificity towards lignin mineralization when colonizing dead wood or lignocellulosic compounds. Its lignocellulose degrading system is formed by cellulose hydrolytic enzymes, manganese peroxidases, and laccases that catalyze the efficient depolymerization and mineralization of lignocellulose. To determine if this metabolic specialization has modified codon usage of the lignocellulolytic system, improving its adaptation to the fungal translational machine, we analyzed the adaptation to host codon usage (CAI), tRNA pool (tAI, and AAtAI), codon pair bias (CPB), and the number of effective codons (Nc). These indexes were correlated with gene expression of C. subvermispora, in the presence of glucose and Aspen wood. General gene expression was not correlated with the index values. However, in media containing Aspen wood, the induction of expression of lignocellulose-degrading genes, showed significantly (p < 0.001) higher values of CAI, AAtAI, CPB, tAI, and lower values of Nc than non-induced genes. Cellulose-binding proteins and manganese peroxidases presented the highest adaptation values. We also identified an expansion of genes encoding glycine and glutamic acid tRNAs. Our results suggest that the metabolic specialization to use wood as the sole carbon source has introduced a bias in the codon usage of genes involved in lignocellulose degradation. This bias reduces codon diversity and increases codon usage adaptation to the tRNA pool available in C. subvermispora. To our knowledge, this is the first study showing that codon usage is modified to improve the translation efficiency of a group of genes involved in a particular metabolic process.es_ES
Patrocinadordc.description.sponsorshipUSACH 021971GM_DAS DI-ULagoses_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherMDPIes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceGeneses_ES
Keywordsdc.subjectCodon biases_ES
Keywordsdc.subjectCeriporiopsis subvermispora;es_ES
Keywordsdc.subjectLignocellulose degrading systemes_ES
Títulodc.titleMetabolic specialization and codon preference of lignocellulolytic genes in the white rot basidiomycete ceriporiopsis subvermisporaes_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorcfres_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile