Estudio de la polimerización de etileno y propileno en sistemas homogéneos y heterogéneos: correlación estado del catalizador – propiedades de los polímeros formados
Professor Advisor
dc.contributor.advisor
Quijada Abarca, Juan
es_CL
Author
dc.contributor.author
Velilla Godoy, Teresa
es_CL
Staff editor
dc.contributor.editor
Facultad de Ciencias Físicas y Matemáticas
es_CL
Staff editor
dc.contributor.editor
Departamento de Ingeniería Química y Biotecnología
es_CL
Associate professor
dc.contributor.other
Araya Figueroa, Paulo
Associate professor
dc.contributor.other
Lienqueo Contreras, María Elena
Associate professor
dc.contributor.other
Vargas Valero, José
Associate professor
dc.contributor.other
Díaz Alzamora, Fernando
Admission date
dc.date.accessioned
2012-09-12T18:12:15Z
Available date
dc.date.available
2012-09-12T18:12:15Z
Publication date
dc.date.issued
2007
es_CL
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/102864
Abstract
dc.description.abstract
Se ha sintetizado polietileno y polipropileno, en sistemas homogéneo y heterogéneo, con
diferentes catalizadores metalocenos y con metilaluminoxano como cocatalizador, en un proceso
de polimerización de tipo slurry. También se han obtenido copolímeros de propileno con αolefinas
de diferentes longitudes de cadena, desde 1-hexeno hasta 1-octadeceno, y caracterizado
en cuanto a sus propiedades térmicas y mecánicas.
El catalizador metaloceno (n-BuCp)2ZrCl2 se ha soportado sobre sílica modificada con una
mezcla de silsesquioxanos (SSO), y se ha utilizado en la polimerización de etileno, obteniéndose
alto peso molecular (342 kg/mol) y alta actividad (10.750 kg/mol Zr/bar/h), comparable con la
correspondiente a la reacción homogénea. El SSO resultó efectivo como espaciador de las
moléculas de catalizador metaloceno sobre la sílica, evitando la desactivación bimolecular del
catalizador. Análisis de espectroscopía infrarroja de reflectancia difusa (DRIFT) y espectroscopía
de fotoelectrones de rayos X (XPS) indican la presencia de dos sitios catalíticos diferentes.
La actividad en la polimerización de propileno con el catalizador Me2Si(2-Me-Ind)2ZrCl2,
soportado sobre sílica, resultó ser muy baja (2% de la actividad en polimerización homogénea).
El peso molecular duplica al del polímero obtenido vía catálisis homogénea. La adición de sílica
in situ al reactor de polimerización, en cambio, permite duplicar la productividad respecto de la
polimerización homogénea. En los polímeros se observa el fenómeno de “réplica”, y presentan
morfología pseudoesférica.
Mediante la aplicación del modelo de flujo de polímero a la polimerización de propileno con
Me2Si(2-Me-Ind)2ZrCl2/ sílica, se ajustó un valor para la constante cinética de propagación: kp =
9,9x105
m3
/k-mol h.
En la copolimerización de propileno con α-olefinas, dos catalizadores metalocenos con diferente
estereoespecificidad fueron utilizados: uno isoselectivo y otro sindioselectivo. Se ha evaluado el
efecto de las diferentes geometrías de los metalocenos sobre la actividad catalítica y las
propiedades de los polímeros; el catalizador Me2Si(2-Me-Ind)2ZrCl2 (isoselectivo) presenta
mayor actividad en la polimerización que el catalizador Ph2C((Flu)(Cp)ZrCl2 (sindioselectivo) y
genera polímeros de menor peso molecular; éste disminuye con la incorporación de comonómero,
independientemente de su longitud de cadena y del catalizador, ya que la presencia de α-olefina
favorece las reacciones de terminación de cadena.
En cuanto a las propiedades térmicas, la incorporación de comonómero causa un descenso en la
temperatura de fusión y la cristalinidad de copolímeros isotácticos. Los copolímeros
sindiotácticos muestran una cristalinidad muy baja, resultando prácticamente amorfos cuando la
longitud de cadena del comonómero es superior a diez átomos de carbono. Una variación
importante se registra en la temperatura de transición vítrea de estos copolímeros: cuando la
incorporación de 1-octeno crece de 0 a 12,6% molar, esta temperatura desciende del orden de
10ºC.
Las propiedades mecánicas de los copolímeros mostraron que tanto el módulo de Young como el
esfuerzo de fluencia decrecen a medida que aumenta la incorporación de comonómero y su
longitud de cadena. Al aumentar la incorporación, el copolímero se transforma de termoplástico a
elastómero.
Estudio de la polimerización de etileno y propileno en sistemas homogéneos y heterogéneos: correlación estado del catalizador – propiedades de los polímeros formados