About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Pregrado
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Pregrado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Metodología para Extraer Intereses de Usuarios de Twitter para Generación de Recomendaciones

Tesis
Thumbnail
Open/Download
Iconcf-castro_ms.pdf (891.0Kb)
Publication date
2010
Metadata
Show full item record
Cómo citar
Pino Urtubia, José
Cómo citar
Metodología para Extraer Intereses de Usuarios de Twitter para Generación de Recomendaciones
.
Copiar
Cerrar

Author
  • Castro Squella, Mario;
Professor Advisor
  • Pino Urtubia, José;
Abstract
Twitter es un servicio que últimamente ha adquirido bastante notoriedad en el cual sus usuarios envían y leen entradas de texto de un largo máximo de 140 caracteres. En estos mensajes los usuarios hablan de sus actividades diarias y comparten opiniones e información. Se puede acceder a Twitter desde diversas plataformas como aplicaciones de escritorio, aplicaciones móviles y en la web. Sumado a esto, Twitter cuenta con una API abierta con la cual desarrolladores pueden acceder a su contenido y desarrollar aplicaciones. Esto presenta una oportunidad interesante para efectuar tareas de recuperación de la información y de procesamiento de lenguaje natural. Esta memoria tuvo como objetivo aplicar una metodología para identificar y clasificar términos indicativos de intereses de los usuarios. El conocer estos intereses resulta útil para tareas de filtrado de información como lo es la generación de recomendaciones. Para identificar y clasificar los términos se hizo uso de técnicas estadísticas y resultados de búsquedas en el motor de búsqueda Google. Los resultados obtenidos muestran que es posible identificar términos claves indicativos de intereses, y que estas técnicas se pueden refinar para obtener resultados más precisos.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/103817
Collections
  • Tesis Pregrado
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account