Show simple item record

Professor Advisordc.contributor.advisorLavandero González, Sergio es_CL
Professor Advisordc.contributor.advisorSáez, Juan Carloses_CL
Authordc.contributor.authorSalas Castro, Daniela Paz es_CL
Staff editordc.contributor.editorFacultad de Ciencias Químicas y Farmacéuticases_CL
Staff editordc.contributor.editorDepartamento de Bioquímica y Biología Moleculares_CL
Admission datedc.date.accessioned2012-09-12T18:24:45Z
Available datedc.date.available2012-09-12T18:24:45Z
Publication datedc.date.issued2009es_CL
Identifierdc.identifier.urihttps://repositorio.uchile.cl/tesis/uchile/2009/qf-salas_d/html/index-frames.htmles_CL
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/105307
General notedc.descriptionMemoria para optar al título de Bioquímicoes_CL
Abstractdc.description.abstractEl correcto funcionamiento celular requiere condiciones físicas específicas, como pH, temperatura y fuerza iónica. Cualquier alteración de estos parámetros puede producir consecuencias graves para las células. La mantención del volumen celular es otro de los parámetros importantes para la célula ya que regula la fuerza iónica y las concentraciones de osmolitos y segundos mensajeros intracelulares. En patologías como la diabetes o isquémicas como el infarto agudo al miocardio, ocurren alteraciones del volumen celular. Durante la isquemia disminuye el aporte de nutrientes y oxígeno a las células por lo que aumenta el catabolismo de nutrientes para obtener energía. Como consecuencia, aumenta la osmolaridad intracelular y con ello, la entrada de agua a la célula produciéndose un aumento de su volumen. Pero las células han desarrollado mecanismos para regular su volumen y volver a la normalidad frente a cambios en la osmolaridad del medio. En el caso del estrés hiposmótico, la estrategia consiste en sacar iones de la célula, lo que disminuye su contenido de agua. Se ha descrito que los cardiomiocitos no regulan espontáneamente su volumen en condiciones de estrés hiposmótico, lo que se ha asociado a muerte. Este hecho es importante si consideramos que el corazón es uno de los órganos más afectados por enfermedades que incluyen episodios isquémicos. Las conexinas son proteínas de transmembrana que forman hexámeros (hemicanal) y se insertan en la membrana plasmática de las células. Si dos hemicanales de células adyacentes se unen forman un canal de una unión en hendidura, y permiten la comunicación de los citoplasmas de las células vecinas. Se ha propuesto que los hemicanales formados por la conexina 43 (Hcs-Cx43) podrían participar en la regulación de volumen de las células, ya que forman verdaderos poros en la superficie celular que permite el paso de agua e iones por difusión simple. El objetivo de esta tesis consistió en determinar si los hemicanales formados por conexinas participan en la regulación de volumen del cardiomiocito expuesto a estrés hiposmótico. Para este fin cultivos primarios de cardiomiocitos de ratas neonatas se expusieron a estrés hiposmótico y se estudió: • Si el estrés hiposmótico modifica el estado funcional de los Hcs-Cx43 a través de la técnica de captación de etidio • Si los cambios en el estado funcional de los Hcs-Cx obedecen a modificaciones en la cantidad de los Hcs-Cx43 expuestos en la membrana o cambios en su estado de fosforilación, mediante la técnica de biotinilación de proteínas de superficie • Si los Hcs-Cx43 participan en la regulación de volumen del cardiomiocito expuesto a estrés hiposmótico, mediante el uso de calceina-AM y microscopía confocal como indicador de los cambios de volumen de la célula e interviniendo el sistema con el inhibidor específico de Hcs-Cx43, Gap26. Los resultados muestran que los Hcs-Cx aumentan su estado funcional al exponer las células a estrés hiposmótico, lo que impide la regulación de volumen del cardiomiocito, ya que al inhibirlos con Gap26 recuperan su volumen. Además se sugiere que el aumento funcional de los Hcs-Cx no se podría explicar por cambios en el estado de fosforilación o alteraciones de la cantidad de Hcs-Cx expuestos en la membrana celular. De estos resultados se concluye que los hemicanales formados por conexinas participan en el control del volumen del cardiomiocitoes_CL
Abstractdc.description.abstractThe cell homeostasis requires specific physical conditions such as pH, temperature and ionic strength. Any alteration in these parameters may produce serious consequences to the cell. The maintenance of cell volume is key parameter because is involved in the regulation of ionic strength, and concentration of osmolyte and intracellular second messengers. Alterations in cell volume have been described in pathologies such as diabetes, stroke and acute myocardial infarction. During ischemia the nutrients and oxygen availability to the cells diminishes, resulting in an increased catabolism in order to obtain energy. As a consequence, intracellular osmolarity increases leading to water influx into the cell and an increase in cell volume. Cells have developed different compensatory mechanisms to restore their volume when they are exposed to changes in external osmolarity. In the case of hyposmotic stress, ions are pumped out the cell to diminish water content. It has been shown that cardiac myocytes are unable to spontaneously regulate their volume when exposed to osmotic stress, and this event has been associated with increased cell death susceptibility. This is important if we consider that cardiac tissue is one of the most affected organs by ischemic diseases. Connexins are transmembrane proteins forming hexamers (hemichannels) at the cell membrane. When two hemichannels from adjacent cells reach each other, they form a gap junction channel, which allow communication of both cytoplasms. It has been proposed that hemichannels formed by connexin 43 (Hcs-Cx43) may participate in cell volume regulation because they form pores in the cell surface allowing the passage of water and ions by simple diffusion. The aim of this work was to evaluate whether Hcs-Cx43 participates in the volume regulation of cardiac myocytes exposed to hyposmotic stress. To this end, cultured neonatal rat cardiac myocytes were exposed to hyposmotic stress and we study whether: • Hyposmotic stress modifies the functional state of Hcs-Cx43 assessing the ethidium uptake by the cells • Changes in Hcs-Cx functional state are explained by the number of Hcs-Cx43 present in the cell membrane or by changes in their phosphorylation status. • Hcs-Cx43 participates in the volume regulation of cardiac myocyte exposed to hyposmotic stress. This was evaluated using calcein-AM and confocal microscopy to measure changes in cell volume and Gap26 to inhibit Hcs-Cx43. The results showed that the functional state of Hcs-Cx is enhanced in cells exposed to hyposmotic stress. Such increase in the functional state of Hcs-Cx could not be explained by changes in the phosphorylation state or alterations in the amount of Hcs- Cx exposed in the cell surface. The increase in cardiac myocyte volume induced by hyposmostic stress was inhibited by Gap26. These results collectively show that connexin hemichannels participates in the regulation of cardiac myocyte volumeen
Lenguagedc.language.isoeses_CL
Publisherdc.publisherUniversidad de Chilees_CL
Publisherdc.publisherCyberDocses_CL
Type of licensedc.rightsSalas Castro, Daniela Pazes_CL
Keywordsdc.subjectBioquímicaes_CL
Keywordsdc.subjectCélulas del corazónes_CL
Keywordsdc.subjectEstrés (Fisiología)es_CL
Keywordsdc.subjectConexinases_CL
Títulodc.titleHemicanales formados por conexinas en la regulación del volumen del cardiomiocito expuesto a estrés hiposmóticoes_CL
Document typedc.typeTesis


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record