About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Postgrado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Single molecule studies by optical tweezers: folding and unfolding of glucokinase from Thermococcus litoralis

Tesis
Thumbnail
Open/Download
tesis.txt (24bytes)
Publication date
2011
Metadata
Show full item record
Cómo citar
Babul, Jorge
Cómo citar
Single molecule studies by optical tweezers: folding and unfolding of glucokinase from Thermococcus litoralis
.
Copiar
Cerrar

Author
  • Wilson Moya, Christian Andrés Marcelo;
Professor Advisor
  • Babul, Jorge;
  • Bustamante Monteverde, Carlos;
Abstract
Single-molecule manipulation has increasingly become a useful methodology for the study of macromolecular dynamics including unfolding-refolding transitions. In this study we use the optical tweezers to investigate the effect of substrate on the mechanical stability of glucokinase from the hiperthermophilic archeon Thermococcus litoralis. To this end, we derivatize the enzyme with DNA handles, via reactive cysteines and attach them to polystyrene beads. The enzyme with different handle attachments was separated using a native gel electrophoresis assay, and the activity of the enzyme in each gel band was monitored in situ by coupling the formation of glucose-6-phosphate to the formation of formazan and the DNA-protein-DNA construct was purified. Different constructs were pulled to investigate the effect of the ADP substrate on the stability of the protein. At 28 pN, the construct S4C/T57C showed hopping between two conformations with a difference in extension of 5.3 nm. For the unfolding reaction, the distances to the transition state were x‡ = 3.09 ± 0.35 nm in the absence and 2.81 ± 0.62 nm in the presence of ADP, respectively; the corresponding values during refolding were 2.24 ± 0.24 nm and 2.46 ± 0.43 respectively. The rate of unfolding extrapolated to zero force was an order of magnitude smaller in the presence than in absence of ADP, with no changes in the extrapolated refolding rates. These results suggest that the folded state of the protein is stabilized by the substrate with no effect on the distance to the transition state for the unfolding reaction.
General note
Doctor en Ciencias con Mención en Biología Molecular, Celular y Neurociencias
 
No autorizada por el autor para ser publicada a texto completo hasta diciembre de 2013
 
Identifier
URI: https://repositorio.uchile.cl/handle/2250/114149
Collections
  • Tesis Postgrado
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account