On uniformly quasisymmetric groups of circle diffeomorphisms
Author | dc.contributor.author | Navas Flores, Andrés | |
Admission date | dc.date.accessioned | 2009-06-02T12:35:24Z | |
Available date | dc.date.available | 2009-06-02T12:35:24Z | |
Publication date | dc.date.issued | 2006 | |
Cita de ítem | dc.identifier.citation | ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA Volume: 31 Issue: 2 Pages: 437-462 Published: 2006 | en |
Identifier | dc.identifier.issn | 1239-629X | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/118848 | |
Abstract | dc.description.abstract | This article deals with the conjugacy problem of uniformly quasisymmetric groups of circle homeomorphims to groups of Mobius transformations. We prove that if the involved maps have some degree of regularity and the uniform quasisymmetry can be detected by some natural L-1-cocycle associated to the action, then the conjugacy is, in fact, smooth. | en |
Lenguage | dc.language.iso | en | en |
Publisher | dc.publisher | SUOMALAINEN TIEDEAKATEMIA | en |
Keywords | dc.subject | CONVERGENCE GROUPS | en |
Título | dc.title | On uniformly quasisymmetric groups of circle diffeomorphisms | en |
Document type | dc.type | Artículo de revista |
Files in this item
This item appears in the following Collection(s)
-
Artículos de revistas
Artículos de revistas