Finite size effects on the magnetocrystalline anisotropy energy in Fe magnetic nanowires from first principles
Author
dc.contributor.author
Muñoz, F.
Author
dc.contributor.author
Romero, A. H.
es_CL
Author
dc.contributor.author
Mejía-López, J.
es_CL
Author
dc.contributor.author
Morán-López, J. L.
es_CL
Admission date
dc.date.accessioned
2014-01-24T13:39:05Z
Available date
dc.date.available
2014-01-24T13:39:05Z
Publication date
dc.date.issued
2013-03-27
Cita de ítem
dc.identifier.citation
J Nanopart Res (2013) 15:1524
en_US
Identifier
dc.identifier.other
DOI 10.1007/s11051-013-1524-6
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/119698
General note
dc.description
Artículo de publicación ISI.
en_US
Abstract
dc.description.abstract
The geometric and the electronic structures,
the magnetic moments, and the magnetocrystalline
anisotropy energy of bcc-Fe nanowires with
z-axis along the (110) direction are calculated in the
framework of ab initio theories. In particular, we
report a systematic study of free standing nanowires
with geometries and sizes ranging from diatomic to 1
nm wide with 31 atoms per unit cell. We found that for
nanowires with less than 14 atoms per unit cell, the
ground-state structure is body-centered tetragonal. We
also calculated the contributions of the dipolar magnetic
energy to the magnetic anisotropy energy and
found that in some cases, this contribution overcomes
the magnetocrystalline part, determining thereby the
easy axis direction. These results emphasize the
importance and competition between both contributions
in low dimensional systems.