Show simple item record

Authordc.contributor.authorBarbet, Luc 
Authordc.contributor.authorDambrine, Marc es_CL
Authordc.contributor.authorDaniilidis, Aris es_CL
Admission datedc.date.accessioned2014-01-29T19:56:58Z
Available datedc.date.available2014-01-29T19:56:58Z
Publication datedc.date.issued2013
Cita de ítemdc.identifier.citationAdvances in Mathematics 242 (2013) 217–227en_US
Identifierdc.identifier.otherDOI 10.1016/j.aim.2013.03.024
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/119730
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractThe Morse–Sard theorem states that the set of critical values of a Ck smooth function defined on a Euclidean space Rd has Lebesgue measure zero, provided k ≥ d. This result is hereby extended for (generalized) critical values of continuous selections over a compactly indexed countable family of Ck functions: it is shown that these functions are Lipschitz continuous and the set of their Clarke critical values is null.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherElsevieren_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectMorse–Sard theoremen_US
Títulodc.titleThe Morse–Sard theorem for Clarke critical valuesen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile