Show simple item record

Authordc.contributor.authorMartín González, Yves 
Admission datedc.date.accessioned2014-12-15T17:59:21Z
Available datedc.date.available2014-12-15T17:59:21Z
Publication datedc.date.issued2014
Cita de ítemdc.identifier.citationJ. London Math. Soc. (2) 90 (2014) 67–88en_US
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/119826
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractEvery Jacobi cusp form of weight k and index m over SL2(Z) Z2 is in correspondence with 2m Dirichlet series constructed with its Fourier coefficients. The standard way to get from one to the other is by a variation of the Mellin transform. In this paper, we introduce a set of integral kernels which yield the 2m Dirichlet series via the Petersson inner product. We show that those kernels are Jacobi cusp forms and express them in terms of Jacobi Poincar´e series. As an application, we give a new proof of the analytic continuation and functional equations satisfied by the Dirichlet series mentioned above.en_US
Patrocinadordc.description.sponsorshipThis research was supported in part by the FONDECYT grant no. 1121064.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherLondon Mathematical Societyen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Títulodc.titleOn integral kernels for Dirichlet series associated to Jacobi formsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile