Periodic solutions of a fractional neutral equation with finite delay
Author
dc.contributor.author
Poblete Oviedo, Verónica
Author
dc.contributor.author
Pozo, Juan C.
es_CL
Admission date
dc.date.accessioned
2014-12-17T12:44:03Z
Available date
dc.date.available
2014-12-17T12:44:03Z
Publication date
dc.date.issued
2014
Cita de ítem
dc.identifier.citation
J. Evol. Equ. 14 (2014), 417–444
en_US
Identifier
dc.identifier.other
DOI 10.1007/s00028-014-0221-y
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/119837
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
In this paper, we prove the maximal regularity property of an abstract fractional differential
equation with finite delay on periodic Besov and Triebel–Lizorkin spaces and use these results to guarantee
the existence and uniqueness of periodic solution of a neutral fractional differential equation with finite
delay. The main tool used to achieve our goal is an operator-valued version of Miklhin’s Fourier multiplier
theorem and fixed-point argument.