Copper substitutions in synthetic miargyrite α-AgSbS2 mineral: synthesis, characterization and dielectrical properties
Author
dc.contributor.author
Galdámez, A.
Author
dc.contributor.author
López Vergara, F.
es_CL
Author
dc.contributor.author
Veloso Cid, N.
es_CL
Author
dc.contributor.author
Manríquez Castro, Víctor
es_CL
Author
dc.contributor.author
Ávila, R. E.
es_CL
Admission date
dc.date.accessioned
2014-12-18T18:11:42Z
Available date
dc.date.available
2014-12-18T18:11:42Z
Publication date
dc.date.issued
2014
Cita de ítem
dc.identifier.citation
Materials Chemistry and Physics 143 (2014) 1372e1377
en_US
Identifier
dc.identifier.other
DOI: 10.1016/j.matchemphys.2013.11.048
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/119843
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
The nominal compositions Ag0.8Cu0.2SbS2 and Ag0.7Cu0.3SbS2 have been synthesized by conventional
ceramic solid-state reaction at high temperature. X-ray diffraction (XRD) and scanning electron microscopy
chemical analysis (SEM-EDAX) revealed single phases, isostructural to the natural miargyrite a-
AgSbS2 mineral. Examination of the lattice parameters shows a decrease in the cell volume with
increasing copper substitutions. The Raman analysis displays absorptions which may be assigned to the
SbeS stretching vibrations of the SbS3 pyramids. The impedance-frequency analysis showed grain
boundary and electrode interface contributions in non-Debye type relaxation, following Jonscher’s
universal power law. The giant permittivity response is attributed to extrinsic effects without evidence of
a ferroelectric transition. Summerfield scaling, leading to the superposition of impedance analysis, implies
that the relaxation is thermally activated, without introducing more than one underlying transport
mechanism.
en_US
Patrocinador
dc.description.sponsorship
This work was supported by Fondecyt grant N 11090153.The
authors are grateful to the CAI centers of UCM and Dra. Maria Luisa
López for PXRD at variable temperature.