How to Compute the Fukui Matrix and Function for Systems with (Quasi-)Degenerate States
Author
dc.contributor.author
Bultinck, Patrick
Author
dc.contributor.author
Cárdenas Valencia, Carlos
es_CL
Author
dc.contributor.author
Fuentealba Rosas, Patricio
es_CL
Author
dc.contributor.author
Johnson, Paul A.
es_CL
Author
dc.contributor.author
Ayers, Paul W.
es_CL
Admission date
dc.date.accessioned
2015-01-05T19:56:34Z
Available date
dc.date.available
2015-01-05T19:56:34Z
Publication date
dc.date.issued
2014
Cita de ítem
dc.identifier.citation
J. Chem. Theory Comput. 2014, 10, 202−210
en_US
Identifier
dc.identifier.other
DOI: 10.1021/ct400874d
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/119891
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
A system in a spatially (quasi-)degenerate
ground state responds in a qualitatively different way to a
change in the external potential. Consequently, the usual
method for computing the Fukui function, namely, taking the
difference between the electron densities of the N- and N ± 1
electron systems, cannot be applied directly. It is shown how the
Fukui matrix, and thus also the Fukui function, depends on the
nature of the perturbation. One thus needs to use degenerate
perturbation theory for the given perturbing potential to
generate the density matrix whose change with respect to a
change in the number of electrons equals the Fukui matrix.
Accounting for the degeneracy in the case of nitrous oxide
reveals that an average over the degenerate states differs
significantly from using the proper density matrix. We further
show the differences in Fukui functions depending on whether a Dirac delta perturbation is used or an interaction with a true
point charge (leading to the Fukui potential).
en_US
Patrocinador
dc.description.sponsorship
FONDECYT under grant
No. 11090013, and P.F. thanks the FONDECYT for grant No.
1130202.