About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias
  • Instituto de Ecología y Biodiversidad (IEB)
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias
  • Instituto de Ecología y Biodiversidad (IEB)
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

The structure and rate of late Miocene expansion of C-4 plants: Evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan

Artículo
Thumbnail
Open/Download
IconBehrensmeyer AK.pdf (1.619Mb)
Publication date
2007-11
Metadata
Show full item record
Cómo citar
Behrensmeyer, Anna K.
Cómo citar
The structure and rate of late Miocene expansion of C-4 plants: Evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan
.
Copiar
Cerrar

Author
  • Behrensmeyer, Anna K.;
  • Quade, Jay;
  • Cerling, Thure E.;
  • Kappelman, John;
  • Khan, Imran A.;
  • Copeland, Peter;
  • Roe, Lois;
  • Hicks, Jason;
  • Stubblefield, Phoebe;
  • Willis, Brian J.;
  • Latorre, Claudio;
Abstract
This study uses stable isotope variation within individual Mio-Pliocene paleosols to investigate subkilometer-scale phytogeography of late Miocene vegetation change in southeast Asia between ca. 8.1 and 5 Ma, a time interval that coincides with dramatic global vegetation change. We examine trends through time in the distribution of low-latitude grasses (C-4 plants) and forest (C-3 plants) on Indo-Gangetic floodplains using carbon (delta C-13) and oxygen isotopic (delta C-18) values in buried soil carbonates in Siwalik Series sediments exposed in the Rohtas Anticline, north-central Pakistan. Revised, high-resolution magnetostratigraphy and a new Ar-40/Ar-39 date provide improved age control for the 2020 m Rohtas section. Carbon isotope results capture lateral variability of C-3 versus C-4 plants at five stratigraphic levels, R11 (8.0 Ma), R15 (6.74-6.78 Ma), R23 (5.78 Ma), R29 (4.8-4.9 Ma), and upper boundary tuff (UBT; 2.4 Ma), using detailed sampling of paleosols traceable laterally over hundreds of meters. Paleosols and the contained isotopic results can be assigned to three different depositional contexts within the fluvial sediments: channel fill, crevasse-splay, and floodplain environments. delta C-13 results show that near the beginning (8.0 Ma) and after (4.0 Ma) the period of major ecological change, vegetation was homogeneously C-3 or C-4, respectively, regardless of paleo-landscape position. In the intervening period, there is a wide range of values overall, with C-4 grasses first invading the drier portions of the system (floodplain surfaces) and C-3 plants persisting in moister settings, such as topographically lower channel swales. Although abrupt on a geologic timescale, changes in abundance of C-4 plants are modest (similar to 2% per 100,000 yr) compared to rates of vegetation turnover in response to glacial and interglacial climate changes in the Quaternary. Earlier research documented a sharply defined C-3 to C-4 transition in Pakistan between 8.1 and 5.0 Ma, based on vertical sampling, but this higher-resolution study reveals a more gradual transition between 8.0 and 4.5 Ma in which C-3 and C-4 plants occupied different subenvironments of the Siwalik alluvial plain. delta O-18 values as well as delta C-13 values of soil carbonate increase up section at Rohtas, similar to isotope trends in other paleosol records from the region. Spatially, however, there is no correlation between delta C-13 and delta O-18 values at most stratigraphic levels. This implies that the changes in soil hydrology brought about by the shift from forest to grassland (i.e., an increase in average soil evaporation) did not produce the shift through time in delta O-18 values. We interpret the trend toward heavier soil carbonate delta O-18 values as a response to changes in external climatic factors such as a net decrease in rainfall over the past 9 Ma.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/119945
ISSN: 0016-7606
Quote Item
GEOLOGICAL SOCIETY OF AMERICA BULLETIN Volume: 119 Issue: 11-12 Pages: 1486-1505 Published: NOV-DEC 2007
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account