Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California
Author
dc.contributor.author
Alonso, Máximo F.
Author
dc.contributor.author
Corwin, Dennis L.
es_CL
Author
dc.contributor.author
Oster, James D.
es_CL
Author
dc.contributor.author
Maas, John
es_CL
Author
dc.contributor.author
Kaffka, Stephen R.
es_CL
Admission date
dc.date.accessioned
2014-01-15T20:36:38Z
Available date
dc.date.available
2014-01-15T20:36:38Z
Publication date
dc.date.issued
2013
Cita de ítem
dc.identifier.citation
Sustainability 2013, 5, 3839-3857
en_US
Identifier
dc.identifier.issn
2071-1050
Identifier
dc.identifier.other
doi:10.3390/su5093839
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/120222
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
Salinity and trace mineral accumulation threaten the sustainability of crop production in many semi-arid parts of the world, including California’s western San Joaquin Valley (WSJV). We used data from a multi-year field-scale trial in Kings County and related container trials to simulate a forage-grazing system under saline conditions. The model uses rainfall and irrigation water amounts, irrigation water quality, soil, plant, and atmospheric variables to predict Bermuda grass (Cynodon dactylon (L.) Pers.) growth, quality, and use by cattle. Simulations based on field measurements and a related container study indicate that although soil chemical composition is affected by irrigation water quality, irrigation timing and frequency can be used to mitigate salt and trace mineral accumulation. Bermuda grass yields of up to 12 Mg dry matter (DM)·ha−1 were observed at the field site and predicted by the model. Forage yield and quality supports un-supplemented cattle stocking rates of 1.0 to 1.2 animal units (AU)·ha−1. However, a balance must be achieved between stocking rate, desired average daily gain, accumulation of salts in the soil profile, and potential pollution of ground water from drainage and leaching. Using available weather data, crop-specific parameter values and field scale measurements of soil salinity and nitrogen levels, the model can be used by farmers growing forages on saline soils elsewhere, to sustain forage and livestock production under similarly marginal conditions.