About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Spaces of tilings, finite telescopic approximations and gap-labeling

Artículo
Thumbnail
Open/Download
IconBellissard_Jean.pdf (433.5Kb)
Publication date
2006-01
Metadata
Show full item record
Cómo citar
Bellissard, Jean
Cómo citar
Spaces of tilings, finite telescopic approximations and gap-labeling
.
Copiar
Cerrar

Author
  • Bellissard, Jean;
  • Benedetti, Riccardo;
  • Gambaudo, Jean Marc;
Abstract
The continuous Hull of a repetitive tiling T in R-d with the Finite Pattern Condition (FPC) inherits a minimal R-d-lamination structure with flat leaves and a transversal Gamma(T) which is a Cantor set. This class of tiling includes the Penrose & the Amman Benkker ones in 2D, as well as the icosahedral tilings in 3D. We show that the continuous Hull, with its canonical R-d-action, can be seen as the projective limit of a suitable sequence of branched, oriented and flat compact d-manifolds. As a consequence, the longitudinal cohomology and the K-theory of the corresponding C*-algebra A(T) are obtained as direct limits of cohomology and K-theory of ordinary manifolds. Moreover, the space of invariant finite positive measures can be identified with a cone in the d(th) homology group canonically associated with the orientation of R-d. At last, the gap labeling theorem holds: given an invariant ergodic probability measure mu on the Hull the corresponding Integrated Density of States (IDS) of any selfadjoint operators affiliated to A(T) takes on values on spectral gaps in the Z-module generated by the occurrence probabilities of finite patches in the tiling.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/124764
ISSN: 0010-3616
Quote Item
COMMUNICATIONS IN MATHEMATICAL PHYSICS Volume: 261 Issue: 1 Pages: 1-41 Published: JAN 2006
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account