Show simple item record

Authordc.contributor.authorPino Manresa, Manuel del 
Authordc.contributor.authorKowalczyk, Michal es_CL
Authordc.contributor.authorMusso, Mónica es_CL
Admission datedc.date.accessioned2009-03-26T17:24:25Z
Available datedc.date.available2009-03-26T17:24:25Z
Publication datedc.date.issued2006-10-15
Cita de ítemdc.identifier.citationJOURNAL OF FUNCTIONAL ANALYSIS Volume: 239 Issue: 2 Pages: 497-541 Published: OCT 15 2006en
Identifierdc.identifier.issn0022-1236
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/124823
Abstractdc.description.abstractLet Omega be a bounded domain with smooth boundary in R-2. We construct non-constant solutions to the complex-valued Ginzburg-Landau equation epsilon(2)Delta u + (1 - vertical bar u vertical bar(2))u = 0 in Omega, as epsilon -> 0, both under zero Neumann and Dirichlet boundary conditions. We reduce the problem of finding solutions having isolated zeros (vortices) with degrees +/- 1 to that of finding critical points of a small C-1-perturbation of the associated renormalized energy. This reduction yields general existence results for vortex solutions. In particular, for the Neumann problem, we find that if Omega is not simply connected, then for any k >= 1 a solution with exactly k vortices of degree one exists.en
Lenguagedc.language.isoenen
Publisherdc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen
Keywordsdc.subjectSTEADY-STATE SOLUTIONSen
Títulodc.titleVariational reduction for Ginzburg-Landau vorticesen
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record