About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Variational reduction for Ginzburg-Landau vortices

Artículo
Thumbnail
Open/Download
IconDelPino_Manuel_Variational.pdf (689.1Kb)
Publication date
2006-10-15
Metadata
Show full item record
Cómo citar
Pino Manresa, Manuel del
Cómo citar
Variational reduction for Ginzburg-Landau vortices
.
Copiar
Cerrar

Author
  • Pino Manresa, Manuel del;
  • Kowalczyk, Michal;
  • Musso, Mónica;
Abstract
Let Omega be a bounded domain with smooth boundary in R-2. We construct non-constant solutions to the complex-valued Ginzburg-Landau equation epsilon(2)Delta u + (1 - vertical bar u vertical bar(2))u = 0 in Omega, as epsilon -> 0, both under zero Neumann and Dirichlet boundary conditions. We reduce the problem of finding solutions having isolated zeros (vortices) with degrees +/- 1 to that of finding critical points of a small C-1-perturbation of the associated renormalized energy. This reduction yields general existence results for vortex solutions. In particular, for the Neumann problem, we find that if Omega is not simply connected, then for any k >= 1 a solution with exactly k vortices of degree one exists.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/124823
ISSN: 0022-1236
Quote Item
JOURNAL OF FUNCTIONAL ANALYSIS Volume: 239 Issue: 2 Pages: 497-541 Published: OCT 15 2006
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account