Uniqueness of radially symmetric positive solutions for -Delta u+u=u(p) in an annulus
Artículo
Open/ Download
Publication date
2008-09-01Metadata
Show full item record
Cómo citar
Felmer Aichele, Patricio
Cómo citar
Uniqueness of radially symmetric positive solutions for -Delta u+u=u(p) in an annulus
Abstract
In this article we prove that the semi-linear elliptic partial differential equation
-Delta u + u = u(p) in Omega
u > 0 in Omega. u = 0 on partial derivative Omega
possesses a unique positive radially symmetric solution. Here p > 1 and Omega is the annulus (x epsilon R-N vertical bar a < vertical bar x vertical bar < b), with N >= 2, 0 < a < b <= infinity. We also show the positive solution is non-degenerate.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125196
DOI: 10.1016/j.jde.2008.06.006
ISSN: 0022-0396
Quote Item
JOURNAL OF DIFFERENTIAL EQUATIONS Volume: 245 Issue: 5 Pages: 1198-1209 Published: SEP 1 2008
Collections