About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Heights of algebraic numbers modulo multiplicative group actions

Artículo
Thumbnail
Open/Download
IconMaza_Ana Cecilia_de_la.pdf (332.2Kb)
Publication date
2008-08
Metadata
Show full item record
Cómo citar
Maza, Ana Cecilia de la
Cómo citar
Heights of algebraic numbers modulo multiplicative group actions
.
Copiar
Cerrar

Author
  • Maza, Ana Cecilia de la;
  • Friedman Rafael, Eduardo;
Abstract
Given a number field K and a subgroup G ⊂ K ∗ of the multiplicative group of K, Silverman defined the G-height H(θ;G) of an algebraic number θ as H(θ;G) := inf g∈G, n∈N H g1/nθ , where H on the right is the usual absolute height. When G = EK is the units of K, such a height was introduced by Bergé and Martinet who found a formula for H(θ;EK) involving a curious product over the archimedean places of K(θ). We take the analogous product over all places of K(θ) and find that it corresponds to H(θ;K1), where K1 is the kernel of the norm map from K ∗ to Q ∗. We also find that a natural modification of this same product leads to H(θ;K ∗ ). This is a height function on algebraic numbers which is unchanged under multiplication by K ∗. For G = K1, or G = K ∗, we show that H(θ;G) = 1 if and only if θn ∈ G for some positive integer n. For these same G we also show that G-heights have the expected finiteness property: for any real number X and any integer N there are, up to multiplication by elements of G, only finitely many algebraic numbers θ such that H(θ;G) < X and [K(θ) : K]<N. For G = EK, all of these statements were proved by Bergé and Martinet.
Patrocinador
This work was partially supported by Chilean Fondecyt grants Nos. 1010324 and 1010205, and by the Universidad de Talca Programa Formas Extremas y Representación de Formas Cuadráticas. We also gratefully acknowledge the support of a MECESUP PUC-0103 visiting scholar grant.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125259
ISSN: 0022-314X
Quote Item
JOURNAL OF NUMBER THEORY, Volume: 128, Issue: 8, Pages: 2199-2213, 2008
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account