About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line

Artículo
Thumbnail
Open/Download
IconAliste_Prieto_Jose.pdf (350.4Kb)
Publication date
2010
Metadata
Show full item record
Cómo citar
Aliste Prieto, José
Cómo citar
Translation numbers for a class of maps on the dynamical systems arising from quasicrystals in the real line
.
Copiar
Cerrar

Author
  • Aliste Prieto, José;
Abstract
In this paper, we study translation sets for non-decreasing maps of the real line with a pattern-equivariant displacement with respect to a quasicrystal. First, we establish a correspondence between these maps and self maps of the continuous hull associated with the quasicrystal that are homotopic to the identity and preserve orientation. Then, by using first-return times and induced maps, we provide a partial description for the translation set of the latter maps in the case where they have fixed points and obtain the existence of a unique translation number in the case where they do not have fixed points. Finally, we investigate the existence of a semiconjugacy from a fixed-point-free map homotopic to the identity on the hull to the translation given by its translation number. We concentrate on semiconjugacies that are also homotopic to the identity and, under a boundedness condition, we prove a generalization of Poincaré’s theorem, finding a sufficient condition for such a semiconjugacy to exist depending on the translation number of the given map.
Patrocinador
The author acknowledges support from a CONICYT doctoral fellowship and grants: ECOSCONICYT C03EC03, Nucleo Milenio P04-069-F, ANR Crystal Dyn and Basal-CMM.
Identifier
URI: https://repositorio.uchile.cl/handle/2250/125337
DOI: doi:10.1017/S0143385709000145
Quote Item
Ergod. Th. & Dynam. Sys. (2010), 30, 565–594
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account