Show simple item record

Authordc.contributor.authorSan Martín, Jorge 
Authordc.contributor.authorSmaranda, Loredana es_CL
Admission datedc.date.accessioned2010-07-01T19:14:25Z
Available datedc.date.available2010-07-01T19:14:25Z
Publication datedc.date.issued2010
Cita de ítemdc.identifier.citationZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK Volume: 61 Issue: 3 Pages: 401-424 Published: JUN 2010en_US
Identifierdc.identifier.otherDOI 10.1007/s00033-009-0036-9
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/125386
General notedc.descriptionArtículo de publicación ISI
Abstractdc.description.abstractThis paper considers the periodic spectral problem associated with the Laplace operator written in RN (N = 3, 4, 5) periodically perforated by balls, and with homogeneous Dirichlet condition on the boundary of holes. We give an asymptotic expansion for all simple eigenvalues as the size of holes goes to zero. As an application of this result, we use Bloch waves to find the classical strange term in homogenization theory, as the size of holes goes to zero faster than the microstructure period.en_US
Patrocinadordc.description.sponsorshipFondecyt 1090239 BASAL-CMM CNCSIS-UEFISCSU 6/01.07.2009en_US
Lenguagedc.language.isoenen_US
Keywordsdc.subjectAsymptotic analysisen_US
Títulodc.titleAsymptotics for eigenvalues of the Laplacian in higher dimensional periodically perforated domainsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record