Author | dc.contributor.author | San Martín, Jorge | |
Author | dc.contributor.author | Smaranda, Loredana | es_CL |
Admission date | dc.date.accessioned | 2010-07-01T19:14:25Z | |
Available date | dc.date.available | 2010-07-01T19:14:25Z | |
Publication date | dc.date.issued | 2010 | |
Cita de ítem | dc.identifier.citation | ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK Volume: 61 Issue: 3 Pages: 401-424 Published: JUN 2010 | en_US |
Identifier | dc.identifier.other | DOI 10.1007/s00033-009-0036-9 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/125386 | |
General note | dc.description | Artículo de publicación ISI | |
Abstract | dc.description.abstract | This paper considers the periodic spectral problem associated with the Laplace operator written in RN (N = 3, 4, 5)
periodically perforated by balls, and with homogeneous Dirichlet condition on the boundary of holes. We give an asymptotic
expansion for all simple eigenvalues as the size of holes goes to zero. As an application of this result, we use Bloch waves
to find the classical strange term in homogenization theory, as the size of holes goes to zero faster than the microstructure
period. | en_US |
Patrocinador | dc.description.sponsorship | Fondecyt
1090239
BASAL-CMM
CNCSIS-UEFISCSU
6/01.07.2009 | en_US |
Lenguage | dc.language.iso | en | en_US |
Keywords | dc.subject | Asymptotic analysis | en_US |
Título | dc.title | Asymptotics for eigenvalues of the Laplacian in higher dimensional periodically perforated domains | en_US |
Document type | dc.type | Artículo de revista | |