Asymptotics for eigenvalues of the Laplacian in higher dimensional periodically perforated domains
Artículo
Open/ Download
Publication date
2010Metadata
Show full item record
Cómo citar
San Martín, Jorge
Cómo citar
Asymptotics for eigenvalues of the Laplacian in higher dimensional periodically perforated domains
Author
Abstract
This paper considers the periodic spectral problem associated with the Laplace operator written in RN (N = 3, 4, 5)
periodically perforated by balls, and with homogeneous Dirichlet condition on the boundary of holes. We give an asymptotic
expansion for all simple eigenvalues as the size of holes goes to zero. As an application of this result, we use Bloch waves
to find the classical strange term in homogenization theory, as the size of holes goes to zero faster than the microstructure
period.
General note
Artículo de publicación ISI
Patrocinador
Fondecyt
1090239
BASAL-CMM
CNCSIS-UEFISCSU
6/01.07.2009
Quote Item
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK Volume: 61 Issue: 3 Pages: 401-424 Published: JUN 2010
Collections