About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Medicina
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Medicina
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Characterization of the long-terminal repeat single-strand tail-binding site of Moloney-MuLV integrase by crosslinking

Artículo
Thumbnail
Open/Download
IconVERA_JORGE.pdf (1.407Mb)
Publication date
2008
Metadata
Show full item record
Cómo citar
Vera, Jorge
Cómo citar
Characterization of the long-terminal repeat single-strand tail-binding site of Moloney-MuLV integrase by crosslinking
.
Copiar
Cerrar

Author
  • Vera, Jorge;
  • Valenzuela, Beatriz;
  • Roth, Mónica J.;
  • León Decap, Oscar;
Abstract
Processing of viral DNA by retroviral integrase leaves a dinucleotide single-strand overhang in the unprocessed strand. Previous studies have stressed the importance of the 5’ single-stranded (ss) tail in the integration process. To characterize the ss-tail binding site on M-MuLV integrase, we carried out crosslinking studies utilizing a disintegration substrate that mimics the covalent intermediate formed during integration. This substrate carried reactive groups at the 5’ ss tail. A bromoacetyl derivative with a side chain of 6 Å was crosslinked to the mutant IN 106-404, which lacks the N-terminal domain, yielding a crosslinked complex of 50 kDa. Treatment of IN 106-404 with N-ethylmaleimide (NEM) prevented crosslinking, suggesting that Cys209 was involved in the reaction. The reactivity of Cys209 was confirmed by crosslinking of a more specific derivative carrying maleimide groups that spans 8Å approximately. In contrast, WT IN was not reactive, suggesting that the N-terminal domain modifies the reactivity of the Cys209 or the positioning of the crosslinker side chain. A similar oligonucleotide-carrying iodouridine at the 5’ss tail reacted with both IN 106-404 and WT IN upon UV irradiation. This reaction was also prevented by NEM, suggesting that the ss-tail positions near a peptide region that includes Cys209.
Patrocinador
This work was funded by grants Fondecyt 1040409 (O.L.) and National Institutes of Health RO1 GM070837 (M.J.R.)
Identifier
URI: https://repositorio.uchile.cl/handle/2250/128345
ISSN: 0716-9760
Quote Item
BIOLOGICAL RESEARCH, Volume: 41, Issue: 1, Pages: 69-80, 2008
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account