Show simple item record

Authordc.contributor.authorBelabas, Karim 
Authordc.contributor.authorFriedman Rafael, Eduardo 
Admission datedc.date.accessioned2015-08-20T18:55:28Z
Available datedc.date.available2015-08-20T18:55:28Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationMathematics of Computation, Volume 84, Number 291, January 2015, Pages 357–369en_US
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/132974
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractAssuming the Generalized Riemann Hypothesis, Bach has shown that one can calculate the residue of the Dedekind zeta function of a number field K by a clever use of the splitting of primes p < X, with an error asymptotically bounded by 8.33 log D_K/(\sqrt{X}\log X), where D_K is the absolute value of the discriminant of K. Guided by Weil's explicit formula and still assuming GRH, we make a different use of the splitting of primes and thereby improve Bach's constant to 2.33. This results in substantial speeding of one part of Buchmann's class group algorithm.en_US
Patrocinadordc.description.sponsorshipChilean Programa Iniciativa Cient´ıfica Milenio grant ICM P07-027-F and Fondecyt grant 1110277.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherAmerican Mathematical Societyen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Títulodc.titleComputing the residue of the Dedekind zeta functionen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile