Computing the residue of the Dedekind zeta function
Author
dc.contributor.author
Belabas, Karim
Author
dc.contributor.author
Friedman Rafael, Eduardo
Admission date
dc.date.accessioned
2015-08-20T18:55:28Z
Available date
dc.date.available
2015-08-20T18:55:28Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Mathematics of Computation, Volume 84, Number 291, January 2015, Pages 357–369
en_US
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/132974
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
Assuming the Generalized Riemann Hypothesis, Bach has shown that one can calculate the residue of the Dedekind zeta function of a number field K by a clever use of the splitting of primes p < X, with an error asymptotically bounded by 8.33 log D_K/(\sqrt{X}\log X), where D_K is the absolute value of the discriminant of K. Guided by Weil's explicit formula and still assuming GRH, we make a different use of the splitting of primes and thereby improve Bach's constant to 2.33. This results in substantial speeding of one part of Buchmann's class group algorithm.
en_US
Patrocinador
dc.description.sponsorship
Chilean Programa Iniciativa Cient´ıfica Milenio
grant ICM P07-027-F and Fondecyt grant 1110277.