Evolution of the doping regimes in the Al-doped SnO2 nanoparticles prepared by a polymer precursor method
Author
dc.contributor.author
Aragón, F. H.
Author
dc.contributor.author
Coaquira, J. A. H.
Author
dc.contributor.author
Villegas Lelovsky, L.
Author
dc.contributor.author
Silva, S. W. da
Author
dc.contributor.author
Cesar, D. F.
Author
dc.contributor.author
Nagamine, L. C.
Author
dc.contributor.author
Cohen, R.
Author
dc.contributor.author
Menéndez Proupin, Eduardo
Author
dc.contributor.author
Morais, P. C.
Admission date
dc.date.accessioned
2015-08-25T02:27:44Z
Available date
dc.date.available
2015-08-25T02:27:44Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Journal of Physics - Condensed Matter. Volumen: 27 Número: 9
en_US
Identifier
dc.identifier.other
DOI: 10.1088/0953-8984/27/9/095301
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/133089
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
In this study, we report on the structural and hyperfine properties of Al-doped SnO2 nanoparticles synthesized by a polymer precursor method. The x-ray diffraction data analysis carried out using the Rietveld refinement method shows the formation of only rutile-type structures in all samples, with decreasing of the mean crystallite size as the Al content. A systematic study of the unit cell, as well as the vicinity of the interstitial position show strong evidence of two doping regimes in the rutile-type structure of SnO2. Below 7.5 mol% doping a dominant substitutional solution of Al+3 and Sn4+-ions is determined. However, the occupation of both substitutional and interstitial sites is determined above 7.5 mol% doping. These findings are in good agreement with theoretical ab initio calculations.