Stability of iron crystal structures at 0.3-1.5 TPa
Author
dc.contributor.author
Godwal, B.
Author
dc.contributor.author
Gonzalez Cataldo, F.
Author
dc.contributor.author
Verma, A.
Author
dc.contributor.author
Stixrude, Lars
Author
dc.contributor.author
Jeanloz, Raymond
Admission date
dc.date.accessioned
2015-08-31T14:08:30Z
Available date
dc.date.available
2015-08-31T14:08:30Z
Publication date
dc.date.issued
2015
Cita de ítem
dc.identifier.citation
Earth and Planetary Science Letters 409 (2015) 299–306
en_US
Identifier
dc.identifier.other
DOI: 10.1016/j.epsl.2014.10.056
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/133305
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
Ab initio molecular dynamics simulations carried out for tetragonal and orthorhombic distortions of iron closely follow the results of static-lattice electronic-structure calculations in revealing that the body-centered cubic (bcc) phase of Fe is mechanically unstable at pressures of 0.3-1.5 TPa and temperatures up to 7000 K. Crystal-structural instabilities originate in the static lattice for the bcc configuration, and are consistent with recent results from both static and dynamic high-pressure experiments. Both theory and experiment thus show that the close-packed (hexagonal, hcp and face-centered cubic, fcc) crystal structures of iron are those relevant to the cores of Earth-like planets.