Show simple item record

Authordc.contributor.authorCastillo, Juan P. 
Authordc.contributor.authorRui, Huan 
Authordc.contributor.authorBasilio Seyler, Daniel 
Authordc.contributor.authorDas, Avisek 
Authordc.contributor.authorRoux, Benoit 
Authordc.contributor.authorLatorre, Ramón 
Authordc.contributor.authorBezanilla, Francisco 
Authordc.contributor.authorHolmgren, Miguel 
Admission datedc.date.accessioned2015-10-16T19:36:35Z
Available datedc.date.available2015-10-16T19:36:35Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationNature Communications 6:7622 2015en_US
Identifierdc.identifier.otherDOI: 10.1038/ncomms8622
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/134452
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractThe Na+/ K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion.en_US
Patrocinadordc.description.sponsorshipFogarty International Research Collaboration Award RO3 TW008351 NIH R01-GM062342 R01-GM030376 U54-GM087519 FONDECYT 1110430 1150273 Millennium Scientific Initiative of the Chilean Ministry of Economy, Development and Tourism NIH (NINDS) National Institutes of Health P41GM103712-S1 Pittsburgh Supercomputing Center (PSC)en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherNatureen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectMolecular-Dynamics Simulationsen_US
Keywordsdc.subjectCurrent-Voltage Relationshipen_US
Keywordsdc.subjectCrystal-Structureen_US
Keywordsdc.subjectCharge Translocationen_US
Keywordsdc.subjectPump Currenten_US
Keywordsdc.subjectNa,K Pumpen_US
Keywordsdc.subjectNa/K Pumpen_US
Keywordsdc.subjectCalcium-Pumpen_US
Keywordsdc.subjectPk(A) Valuesen_US
Keywordsdc.subjectExtracellular Accessen_US
Títulodc.titleMechanism of potassium ion uptake by the Na+/K+-ATPaseen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile