On a numerical characterization of non-simple principally polarized abelian varieties
Author
dc.contributor.author
Auffarth, Robert
Admission date
dc.date.accessioned
2016-06-29T22:07:26Z
Available date
dc.date.available
2016-06-29T22:07:26Z
Publication date
dc.date.issued
2016
Cita de ítem
dc.identifier.citation
Math. Z. (2016) 282: 731–746
en_US
Identifier
dc.identifier.issn
0025-5874
Identifier
dc.identifier.other
DOI: 10.1007/s00209-015-1562-0
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/139292
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
To every abelian subvariety of a principally polarized abelian variety (A,L) we
canonically associate a numerical class in the Néron–Severi group of A.We prove that these
classes are characterized by their intersection numbers with L; moreover, the cycle class
induced by an abelian subvariety in the Chow ring of A modulo algebraic equivalence can
be described in terms of its numerical divisor class. Over the field of complex numbers,
this correspondence gives way to an explicit description of the (coarse) moduli space that
parametrizes non-simple principally polarized abelian varieties with a fixed numerical class.