Transport of localized and extended excitations in chains embedded with randomly distributed linear and nonlinear n-mers
Author
dc.contributor.author
López González, Dany
Author
dc.contributor.author
Molina Gálvez, Mario
Admission date
dc.date.accessioned
2016-07-04T16:30:33Z
Available date
dc.date.available
2016-07-04T16:30:33Z
Publication date
dc.date.issued
2016
Cita de ítem
dc.identifier.citation
Physical Review E Volumen: 93 Número: 3 Número de artículo: 032205 (2016)
en_US
Identifier
dc.identifier.other
DOI: 10.1103/PhysRevE.93.032205
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/139405
General note
dc.description
Artículo de publicación ISI
en_US
Abstract
dc.description.abstract
We examine the transport of extended and localized excitations in one-dimensional linear chains populated by linear and nonlinear symmetric identical n-mers (with n = 3, 4, 5, and 6), randomly distributed. First, we examine the transmission of plane waves across a single linear n-mer, paying attention to its resonances, and looking for parameters that allow resonances to merge. Within this parameter regime we examine the transmission of plane waves through a disordered and nonlinear segment composed by n-mers randomly placed inside a linear chain. It is observed that nonlinearity tends to inhibit the transmission, which decays as a power law at long segment lengths. This behavior still holds when the n-mer parameters do not obey the resonance condition. On the other hand, the mean square displacement exponent of an initially localized excitation does not depend on nonlinearity at long propagation distances z, and shows a superdiffusive behavior similar to z(1.8) for all n-mers, when parameters obey the resonance merging condition; otherwise the exponent reverts back to the random dimer model value similar to z(1.5).
en_US
Patrocinador
dc.description.sponsorship
FONDECYT, Programa ICM , Programa de Financiamiento Basal de CONICYT, CONICYT.