Show simple item record

Authordc.contributor.authorCabezas, Julián 
Authordc.contributor.authorGalleguillos Torres, Mauricio 
Authordc.contributor.authorPérez Quezada, Jorge 
Admission datedc.date.accessioned2016-09-29T19:29:24Z
Available datedc.date.available2016-09-29T19:29:24Z
Publication datedc.date.issued2016
Cita de ítemdc.identifier.citationIEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 5, May 2016es_ES
Identifierdc.identifier.other10.1109/LGRS.2016.2532743
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/140581
Abstractdc.description.abstractA method to predict vascular plant richness using spectral and textural variables in a heterogeneous wetland is presented. Plant richness was measured at 44 sampling plots in a 16-ha anthropogenic peatland. Several spectral indices, first-order statistics (median and standard deviation), and second-order statistics [metrics of a gray-level co-occurrence matrix (GLCM)] were extracted from a Landsat 8 Operational Land Imager image and a Pleiades 1B image. We selected the most important variables for predicting richness using recursive feature elimination and then built a model using random forest regression. The final model was based on only two textural variables obtained from the GLCM and derived from the Landsat 8 image. An accurate predictive capability was reported (R-2 = 0.6; RMSE = 1.99 species), highlighting the possibility of obtaining parsimonious models using textural variables. In addition, the results showed that the mid-resolution Landsat 8 image provided better predictors of richness than the high-resolution Pleiades image. This is the first study to generate a model for plant richness in a wetland ecosystem.es_ES
Patrocinadordc.description.sponsorshipCONICYT through the FONDECYT 1130935es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEE-Inst Electrical Electronics Engineerses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceIEEE Geoscience and Remote Sensing Letterses_ES
Keywordsdc.subjectGray-level co-occurrence matrix (GLCM)es_ES
Keywordsdc.subjectLandsates_ES
Keywordsdc.subjectPeatlandes_ES
Keywordsdc.subjectPleiadeses_ES
Keywordsdc.subjectRemote sensinges_ES
Keywordsdc.subjectTextural variableses_ES
Títulodc.titlePredicting Vascular Plant Richness in a Heterogeneous Wetland Using Spectral and Textural Features and a Random Forest Algorithmes_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorlajes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile