Calcium sensing receptor as a novel mediator of adipose tissue dysfunction: mechanisms and potential clinical implications
Author
dc.contributor.author
Bravo Sagua, Roberto
Author
dc.contributor.author
Mattar, Pamela
Author
dc.contributor.author
Díaz, Ximena
Author
dc.contributor.author
Lavandero González, Sergio
Author
dc.contributor.author
Cifuentes, Mariana
Admission date
dc.date.accessioned
2017-01-16T15:01:17Z
Available date
dc.date.available
2017-01-16T15:01:17Z
Publication date
dc.date.issued
2016
Cita de ítem
dc.identifier.citation
Frontiers in Physiology September 2016 | Volume 7 | Article 395
es_ES
Identifier
dc.identifier.other
10.3389/fpys.2016.00395
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/142458
Abstract
dc.description.abstract
Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue (WAT) is an active endocrine organ, with a crucial influence on whole-body homeostasis. WAT dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease, and some cancers. Among the regulators of WAT physiology, the calcium-sensing receptor (CaSR) has arisen as a potential mediator of WAT dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that CaSR activation in the visceral (i.e., unhealthy) WAT is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to CaSR activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in WAT plays a key role in the development of WAT dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that CaSR may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic.
es_ES
Patrocinador
dc.description.sponsorship
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), Chile
FONDECYT 1150651
FONDAP
15130011
3160226
21130162