Tasa de convergencia de la velocidad asintótica de un sistema de partículas de tipo Brunet-Derrida
Tesis

Publication date
2016Metadata
Show full item record
Cómo citar
Remenik Zisis, Daniel
Cómo citar
Tasa de convergencia de la velocidad asintótica de un sistema de partículas de tipo Brunet-Derrida
Author
Professor Advisor
Abstract
En este trabajo se estudia un sistema de partículas cuya dinámica está determinada por mecanismos de ramificación y selección.
Cada una de las $N\in \mathbb{N}$ partículas del sistema espera un tiempo exponencial de tasa $\tau > 0$ para generar un nuevo individuo posicionado, relativo al padre, según una medida de probabilidad $\mu$ en $\R$. Inmediatamente después de un evento de ramificación se elimina la partícula que está más a la izquierda dejando la cantidad de individuos constate. Si $\max x^N(t)$ es la posición de la partícula de más a la derecha a tiempo $t\geq 0$ entonces bajo ciertas hipótesis sobre $\mu$ se prueba que $\frac{\max x^N(t)}{t} \stackrel{t\to\infty}{\longrightarrow} v_N $ c.s., donde $v_N$ es una constante determinista, y que $v_N\nearrow v < \infty$, donde $v$ es la velocidad de la partícula de más a la derecha del sistema anterior pero sin el mecanismo de selección. El resultado principal de esta tesis determina una cota para la velocidad de convergencia de $v_N$ a $v$. Específicamente se prueba que $\liminf_{N\to\infty }(v - v_N)(\log N)^2 \geq C$ donde $C$ es una constante explícita dependiente de la transformada de Laplace de $\mu$. Finalmente se estudia un sistema similar a tiempo discreto y se exploran extensiones para el caso en que entre tiempos de ramificación las partículas se mueven según un proceso de Lévy.
General note
Magíster en Ciencias de la Ingeniería, Mención Matemáticas Aplicadas.
Ingeniero Civil Matemático
Identifier
URI: https://repositorio.uchile.cl/handle/2250/143489
Collections
The following license files are associated with this item: