Show simple item record

Authordc.contributor.authorCárdenas Valencia, Carlos 
Authordc.contributor.authorMuñoz, Macarena 
Authordc.contributor.authorContreras, Julia 
Authordc.contributor.authorAyers, Paul W. 
Authordc.contributor.authorGomez, Tatiana 
Authordc.contributor.authorFuentealba Rosas, Patricio 
Admission datedc.date.accessioned2018-07-19T22:59:55Z
Available datedc.date.available2018-07-19T22:59:55Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationActa Phys. -Chim. Sin. 2018, 34 (6), 631–638es_ES
Identifierdc.identifier.other10.3866/PKU.WHXB201710201
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/150061
Abstractdc.description.abstractChemical reactivity towards electron transfer is captured by the Fukui function. However, this is not well defined when the system or its ions have degenerate or pseudo-degenerate ground states. In such a case, the first-order chemical response is not independent of the perturbation and the correct response has to be computed using the mathematical formalism of perturbation theory for degenerate states. Spatial pseudo-degeneracy is ubiquitous in nanostructures with high symmetry and totally extended systems. Given the size of these systems, using degenerate-state perturbation theory is impractical because it requires the calculation of many excited states. Here we present an alternative to compute the chemical response of extended systems using models of local softness in terms of the local density of states. The local softness is approximately equal to the density of states at the Fermi level. However, such approximation leaves out the contribution of inner states. In order to include and weight the contribution of the states around the Fermi level, a model inspired by the long-range behavior of the local softness is presented. Single wall capped carbon nanotubes (SWCCNT) illustrate the limitation of the frontier orbital theory in extended systems. Thus, we have used a C-360 SWCCNT to test the proposed model and how it compares with available models based on the local density of states. Interestingly, a simple Huckel approximation captures the main features of chemical response of these systems. Our results suggest that density-of-states models of the softness along simple tight binding Hamiltonians could be used to explore the chemical reactivity of more complex system, such a surfaces and nanoparticles.es_ES
Patrocinadordc.description.sponsorshipFONDECYT 1140313 11150164 Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB0807 Fondo de Innovacion para la Competitividad del Ministerio de Economia, Fomento y Turismo de Chile RC-130006 CILIS CONICYT 21130691 NSERC Compute Canada Canada Research Chairses_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherPeking University Presses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceActa Physico Chimica Sinicaes_ES
Keywordsdc.subjectLocal softnesses_ES
Keywordsdc.subjectFukui functiones_ES
Keywordsdc.subjectReactivityes_ES
Keywordsdc.subjectCarbon nanotubeses_ES
Keywordsdc.subjectDensity of stateses_ES
Títulodc.titleUnderstanding chemical reactivity in extended systems: exploring models of chemical softness in carbon nanotubeses_ES
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadortjnes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile