Abstract
We prove the existence of minimal heteroclinic orbits for a class of fourth order O.D.E. systems with variational structure. In our general set-up, the set of equilibria of these systems is a union of manifolds, and the heteroclinic orbits connect two disjoint components of this set. (C) 2018 Elsevier Ltd. All rights reserved.
Patrocinador
Fondo Basal CMM-Chile
Fondecyt
3160055
Indexation
Artículo de publicación ISI