Show simple item record

Authordc.contributor.authorCastañeda González, Alvaro
Authordc.contributor.authorRobledo Veloso, Gonzalo
Admission datedc.date.accessioned2018-12-17T19:50:49Z
Available datedc.date.available2018-12-17T19:50:49Z
Publication datedc.date.issued2018
Cita de ítemdc.identifier.citationDiscrete and Continuous Dynamical Systems, Volume 38, Number 5, May 2018 pp. 2287–2304es_ES
Identifierdc.identifier.issn1078-0947
Identifierdc.identifier.other10.3934/dcds.2018094
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/153377
Abstractdc.description.abstractWe construct a bijection between the solutions of a linear system of nonautonomous difference equations which is uniformly asymptotically stable and its unbounded perturbation. The key idea used to made this bijection is to consider the crossing times of the solutions with the unit sphere. This approach prompt us to introduce the concept of almost topological conjugacy in this nonautonomous framework. This task is carried out by simplifying both systems through a spectral approach of the notion of almost reducibility combined with suitable technical assumptions.es_ES
Patrocinadordc.description.sponsorshipMATHAMSUD cooperation program 16-MATH-04 STADE ; FONDECYT 1170968es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherAmerican Institute of Mathematical Scienceses_ES
Sourcedc.sourceDiscrete and Continuous Dynamical Systemses_ES
Keywordsdc.subjectNonautonomus hyperbolicityes_ES
Keywordsdc.subjectSacker & sell's spectrumes_ES
Keywordsdc.subjectTopological equivalencees_ES
Keywordsdc.subjectDifference equationses_ES
Keywordsdc.subjectGlobal linearizationes_ES
Títulodc.titleDichotomy spectrum and almost topological conjugacy on nonautonomus unbounded difference systemses_ES
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorrvhes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record