Show simple item record
Author | dc.contributor.author | Imamoglu, Özlem | |
Author | dc.contributor.author | Martin, Yves | |
Admission date | dc.date.accessioned | 2018-12-20T14:05:55Z | |
Available date | dc.date.available | 2018-12-20T14:05:55Z | |
Publication date | dc.date.issued | 2004 | |
Cita de ítem | dc.identifier.citation | Mathematische Nachrichten, Volumen 273, | |
Identifier | dc.identifier.issn | 0025584X | |
Identifier | dc.identifier.other | 10.1002/mana.200310197 | |
Identifier | dc.identifier.uri | https://repositorio.uchile.cl/handle/2250/153818 | |
Abstract | dc.description.abstract | In this article we study a Rankin-Selberg convolution of n complex variables for pairs of degree n Siegel cusp forms. We establish its analytic continuation to ℂn, determine its functional equations and find its singular curves. Also, we introduce and get similar results for a convolution of degree n Jacobi cusp forms. Furthermore, we show how the relation of a Siegel cusp form and its Fourier-Jacobi coefficients is reflected in a particular relation connecting the two convolutions studied in this paper. As a consequence, the Dirichlet series introduced by Kalinin [7] and Yamazaki [19] are obtained as particular cases. As another application we generalize to any degree the estimate on the size of Fourier coefficients given in [14]. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | |
Lenguage | dc.language.iso | en | |
Type of license | dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
Link to License | dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
Source | dc.source | Mathematische Nachrichten | |
Keywords | dc.subject | Dirichlet series | |
Keywords | dc.subject | Siegel modular forms | |
Título | dc.title | On convolutions of Siegel modular forms | |
Document type | dc.type | Artículo de revista | |
Cataloguer | uchile.catalogador | SCOPUS | |
Indexation | uchile.index | Artículo de publicación SCOPUS | |
uchile.cosecha | uchile.cosecha | SI | |
Files in this item
- Name:
- item_4644300537.pdf
- Size:
- 1.870Kb
- Format:
- PDF
This item appears in the following Collection(s)
Show simple item record
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile