Show simple item record

Authordc.contributor.authorO'Dwyer, Colm 
Authordc.contributor.authorLavayen, Vladimir 
Authordc.contributor.authorTanner, David A. 
Authordc.contributor.authorNewcomb, Simon B. 
Authordc.contributor.authorBenavente Espinosa, Eglantina 
Authordc.contributor.authorGonzález Moraga, Guillermo 
Authordc.contributor.authorSotomayor Torres, Clivia 
Admission datedc.date.accessioned2018-12-20T14:05:58Z
Available datedc.date.available2018-12-20T14:05:58Z
Publication datedc.date.issued2009
Cita de ítemdc.identifier.citationAdvanced Functional Materials, Volumen 19, Issue 11, 2018, Pages 1736-1745
Identifierdc.identifier.issn1616301X
Identifierdc.identifier.issn16163028
Identifierdc.identifier.other10.1002/adfm.200801107
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/153837
Abstractdc.description.abstractThe relationship between the nanoscale structure of vanadium pentoxide nanotubes and their ability to accommodate Li+ during intercalation/ deintercalation is explored. The nanotubes are synthesized using two different precursors through a surfactant-assisted templating method, resulting in standalone VOx (vanadium oxide) nanotubes and also "nanourchin". Under highly reducing conditions, where the interlaminar uptake of primary alkylamines is maximized, standalone nanotubes exhibit near-perfect scrolled layers and long-range structural order even at the molecular level. Under less reducing conditions, the degree of amine uptake is reduced due to a lower density of V4+ sites and less V2O5 is functionalized with adsorbed alkylammonium cations. This is typical of the nano-urchin structure. Highresolution TEM studies revealed the unique observation of nanometer-scale nanocrystals of pristine unreacted V 2O5 throughout the length of the nanotubes in the nano-urchin. Electrochemical intercal
Lenguagedc.language.isoen
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
Sourcedc.sourceAdvanced Functional Materials
Keywordsdc.subjectElectronic, Optical and Magnetic Materials
Keywordsdc.subjectBiomaterials
Keywordsdc.subjectCondensed Matter Physics
Keywordsdc.subjectElectrochemistry
Títulodc.titleReduced surfactant uptake in three dimensional assemblies of VOx Nanotubes Improves Reversible Li+ intercalation and charge capacity
Document typedc.typeArtículo de revista
Catalogueruchile.catalogadorSCOPUS
Indexationuchile.indexArtículo de publicación SCOPUS
uchile.cosechauchile.cosechaSI


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile